中国剩余定理(crt)和扩展中国剩余定理(excrt)
数论守门员二号 =。=
中国剩余定理:
1.一次同余方程组:
一次同余方程组是指形如x≡ai(mod mi) (i=1,2,…,k)的同余方程构成的组
中国剩余定理的主要用途是解一次同余方程组,其中m1,m2,...,mk互质
2.中国剩余定理:
令M=m1*m2*...*mk(即所有m的lcm)
ti为同余方程M/mi*ti≡1(mod mi)的最小正整数解
则存在解x=∑ai*M/mi*ti
通解为x+i*M
最小非负整数解为(x%M+M)%M
(我承认这段是抄的orz
原文看起来更方便:https://blog.csdn.net/niiick/article/details/80229217)
M/mi*ti≡1(mod mi)可转化为M/mi*ti+mi*y=1,然后用exgcd求ti
其中gcd(M/mi, mi)=1,意义为方程组一定有解
3.证明:
对于第k个方程
①当i≠k时,有mk|M/mi,即ai*M/mi*ti≡0(mod mk)
②当i=k时,有M/mk*tk≡1(mod mk),即ak*M/mk*tk≡ak(mod mk)
故∑ai*M/mi*ti≡ak(mod mk)
4.代码:
(其中LL是long long,qcm是快速乘)
LL crt(){
LL bwl=;
for(int i=;i<=k;++i){
LL x,y;
exgcd(M/m[i],m[i],x,y);
if(x<) x=x%m[i]+m[i];
bwl=(bwl+qcm(qcm(a[i],M/m[i]),x))%M;
}
return (bwl+M)%M;
}
5.孙子算经:
《孙子算经》:今有物不知其数,三三数之剩二;五五数之剩三;七七数之剩二。问物几何?
《算法统宗》:三人同行七十稀,五树梅花廿一枝,七子团圆月正半,除百零五便得知。
其中70=3*5*2,70%3=1,21=3*7*1,21%5=1,15(半个月)=3*5*1,15%7=1
用70*2+21*3+15*2=233除3*5*7=105,得到的余数23即为答案
70=3*5*2,21=3*7*1,15=3*5*1三式中的最后一个乘数2、1、1即为上文提到的di
数字还挺吉利的233
扩展中国剩余定理:
1.一次同余方程组:
扩展中国剩余定理的主要用途是解一次同余方程组,其中m1,m2,...,mn不一定互质
2.扩展中国剩余定理:
令前k-1个方程组成的同余方程组的一个解为x
且M为前k-1个模数的lcm
则前k-1个方程的方程组的通解为x+i*M
现在将第k个方程加入
只需求一个正整数t,使得
x+t*M≡ak(mod mk)
可以转化为M*t+mk*y=ak-x
然后用exgcd求出t
若此方程无解,则整个同余方程组无解
否则x+t*M为前k个方程的方程组的一个解
(这段也是我抄的,原文和上边一样orz)
3.代码:
(其中LL是long long,qcm是快速乘,三个参数分别为两个乘数和模数)
LL excrt(){
LL M=m[],ans=a[];
for(int i=;i<=k;++i){
LL x,y;
LL d=gcd(M,m[i]);
LL c=(a[i]-ans%m[i]+m[i])%m[i];
if(c%d) return -;
exgcd(M,m[i],x,y);
x=qcm(x,c/d,m[i]/d);
ans+=qcm(x,M,M*m[i]);
M*=m[i]/d;
ans=(ans%M+M)%M;
}
return ans;
}
4.细节:
1.有些题数字卡得严,必须要用快速乘
2.快速乘时注意第二个乘数必须为正,要用通解处理
3.每次快速乘的模数不一定一样,需要好好考虑
例题:
洛谷3868 猜数字
洛谷4777 扩展中国剩余定理
中国剩余定理(crt)和扩展中国剩余定理(excrt)的更多相关文章
- 中国剩余定理(CRT)及其扩展(EXCRT)详解
问题背景 孙子定理是中国古代求解一次同余式方程组的方法.是数论中一个重要定理.又称中国余数定理.一元线性同余方程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作<孙子算经>卷下第 ...
- (伪)再扩展中国剩余定理(洛谷P4774 [NOI2018]屠龙勇士)(中国剩余定理,扩展欧几里德,multiset)
前言 我们熟知的中国剩余定理,在使用条件上其实是很苛刻的,要求模线性方程组\(x\equiv c(\mod m)\)的模数两两互质. 于是就有了扩展中国剩余定理,其实现方法大概是通过扩展欧几里德把两个 ...
- 欧几里得(辗转相除gcd)、扩欧(exgcd)、中国剩余定理(crt)、扩展中国剩余定理(excrt)简要介绍
1.欧几里得算法(辗转相除法) 直接上gcd和lcm代码. int gcd(int x,int y){ ?x:gcd(y,x%y); } int lcm(int x,int y){ return x* ...
- 中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结
中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结 标签:数学方法--数论 阅读体验:https://zybuluo.com/Junlier/note/1300035 前置浅讲 前 ...
- P4777 【模板】扩展中国剩余定理(EXCRT)/ poj2891 Strange Way to Express Integers
P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1 ...
- P4777 【模板】扩展中国剩余定理(EXCRT)&& EXCRT
EXCRT 不保证模数互质 \[\begin{cases} x \equiv b_1\ ({\rm mod}\ a_1) \\ x\equiv b_2\ ({\rm mod}\ a_2) \\ ... ...
- 中国剩余定理(CRT)及其拓展(ExCRT)
中国剩余定理 CRT 推导 给定\(n\)个同余方程 \[ \left\{ \begin{aligned} x &\equiv a_1 \pmod{m_1} \\ x &\equiv ...
- 扩展中国剩余定理 (exCRT) 的证明与练习
原文链接https://www.cnblogs.com/zhouzhendong/p/exCRT.html 扩展中国剩余定理 (exCRT) 的证明与练习 问题模型 给定同余方程组 $$\begin{ ...
- P4777 【模板】扩展中国剩余定理(EXCRT)
思路 中国剩余定理解决的是这样的问题 求x满足 \[ \begin{matrix}x \equiv a_1(mod\ m_1)\\x\equiv a_2(mod\ m_2)\\ \dots\\x\eq ...
随机推荐
- WebContent下新建目录放入jsp,跳转servlet页面出错解决
为方便分类jsp文件,于是在web-content下新建了一级目录,将jsp文件放入其中,结果原本跳转的servlet出现404错误: 解决如下: 在用eclipse创建的servle会自动生成一个注 ...
- 关于js中this指向的问题
this的绑定规则有4种 默认绑定 隐性绑定 显性绑定 new绑定 this绑定优先级 new 绑定 > 显性绑定 > 隐性绑定 > 默认绑定 1.如果函数被new 修饰 this绑 ...
- BZOJ 2631 tree | Luogu P1501 [国家集训队]Tree II (LCT 多重标记下放)
链接:https://www.luogu.org/problemnew/show/P1501 题面: 题目描述 一棵n个点的树,每个点的初始权值为1.对于这棵树有q个操作,每个操作为以下四种操作之一: ...
- 20191204-使用nginx解决ajax测试调用接口跨域问题
问题描述 之前要测试一个http的接口,在postman中测试成功,但使用ajax调用却跨域.于是通过使用ngin反向代理的方式来解决ajax调用跨域问题 测试页面的内容 <html> & ...
- [转帖]Linux 下实践 VxLAN:虚拟机和 Docker 场景
Linux 下实践 VxLAN:虚拟机和 Docker 场景 https://www.cnblogs.com/bakari/p/11264520.html 实践了下 没问题 作者写的很perfect ...
- Git--上手Github
1.创建远程仓库 无论在之后的第二步你是想从本地到远程还是远程到本地,创建远程仓库是第一步肯定的.(推荐克隆本地,然后把本地的代码拷入,然后add push) 因为clone ,github会帮忙创建 ...
- linux:date 计算一组命令所花费的执行时间
date 命令可以用于计算一组命令所花费的执行时间 可以以不同的格式来读取.设置日期. (1) 读取日期: $ date Thu May 20 23:09:04 IST 2010 (2) 打印纪元时: ...
- 通过using声明改变个别成员的可访问性
C++的语法中通过在派生类中使用using声明可以忽略继承方式 , 而让派生类对于基类的私有和保护成员具有特殊的访问权限 , 甚至可以改变派生类对象对于基类成员的访问权限 . 个人认为这种语法很容易让 ...
- Java EE Servlet相关的两个包
Servlet in Java EE 在Java EE的规范API中(链接),Servlet相关联的最重要的两个Package为: 1.javax.servlet 包含了一系列接口和类,他们在一个Se ...
- ASP.NET使用AJAX应注意IIS有没有.ashx扩展
项目添加引用AJAX.DLL了:今天将本地做好的一个web程序放到服务器上,居然报告错误了.web程序使用了ajax来往返数据. 检查生成的html语句,有这么两句代码<script type= ...