题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2874

题目:

Problem Description
After World War X, a lot of cities have been seriously damaged, and we need to rebuild those cities. However, some materials needed can only be produced in certain places. So we need to transport these materials from city to city. For most of roads had been totally destroyed during the war, there might be no path between two cities, no circle exists as well.
Now, your task comes. After giving you the condition of the roads, we want to know if there exists a path between any two cities. If the answer is yes, output the shortest path between them.
 
Input
Input consists of multiple problem instances.For each instance, first line contains three integers n, m and c, 2<=n<=10000, 0<=m<10000, 1<=c<=1000000. n represents the number of cities numbered from 1 to n. Following m lines, each line has three integers i, j and k, represent a road between city i and city j, with length k. Last c lines, two integers i, j each line, indicates a query of city i and city j.
 
Output
For each problem instance, one line for each query. If no path between two cities, output “Not connected”, otherwise output the length of the shortest path between them.
 
Sample Input
5 3 2
1 3 2
2 4 3
5 2 3
1 4
4 5
Sample Output
Not connected
6
 思路:用一个vis数组来处理两个节点是否联通,不连通则输出“Not connected”。剩下的联通点之间的距离就是裸的LCA。
代码实现如下:
 #include <cstdio>
#include <vector>
#include <cstring>
using namespace std; const int maxn = 1e4 + ;
int n, m, q, u, v, k, cnt;
int cost[maxn], deep[maxn], fa[maxn][], vis[maxn]; struct edge {
int v, l;
edge(int v = , int l = ) : v(v), l(l) {}
}; vector<edge> G[maxn]; void init() {
for(int i = ; i <= n; i++) {
G[i].clear();
}
cnt = ;
memset(vis, , sizeof(vis));
memset(cost, , sizeof(cost));
} void dfs(int u, int d, int p) {
fa[u][] = p;
deep[u] = d;
vis[u] = cnt;
for(int i = ; i < G[u].size(); i++) {
int v = G[u][i].v;
if(v != p) {
cost[v] = cost[u] + G[u][i].l;
dfs(v, d + , u);
}
}
} void lca() {
for(int i = ; i <= n; i++) {
for(int j = ; ( << j) <= n; j++) {
fa[i][j] = -;
}
}
for(int j = ; ( << j) <= n; j++) {
for(int i = ; i <= n; i++) {
if(fa[i][j-] != -) {
fa[i][j] = fa[fa[i][j-]][j-];
}
}
}
} int query(int u, int v) {
if(deep[u] < deep[v]) swap(u, v);
int k;
for(k = ; ( << (k+)) <= deep[u]; k++);
for(int i = k; i >= ; i--) {
if(deep[u] - ( << i) >= deep[v]) {
u = fa[u][i];
}
}
if(u == v) return u;
for(int i = k; i >= ; i--) {
if(fa[u][i] != - && fa[u][i] != fa[v][i]) {
u = fa[u][i];
v = fa[v][i];
}
}
return fa[u][];
} int main() {
while(~scanf("%d%d%d", &n, &m, &q)) {
init();
while(m--) {
scanf("%d%d%d", &u, &v, &k);
G[u].push_back(edge(v, k));
G[v].push_back(edge(u, k));
}
for(int i = ; i <= n; i++) {
if(vis[i] == ) {
cnt++;
dfs(i, , -);
}
}
lca();
for(int i = ; i < q; i++) {
scanf("%d%d", &u, &v);
if(vis[u] != vis[v]) {
printf("Not connected\n");
} else {
printf("%d\n", cost[u] + cost[v] - * cost[query(u,v)]);
}
}
}
return ;
}

Connections between cities(LCA)的更多相关文章

  1. HDU 2874 Connections between cities(LCA)

    题目链接 Connections between cities LCA的模板题啦. #include <bits/stdc++.h> using namespace std; #defin ...

  2. 【HDU 2874】Connections between cities(LCA)

    dfs找出所有节点所在树及到树根的距离及深度及父亲. i和j在一棵树上,则最短路为dis[i]+dis[j]-dis[LCA(i,j)]*2. #include <cstring> #in ...

  3. HDU 2874 Connections between cities(LCA(离线、在线)求树上距离+森林)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2874 题目大意:给出n个点,m条边,q个询问,每次询问(u,v)的最短距离,若(u,v)不连通即不在同 ...

  4. [HDOJ2874]Connections between cities(LCA, 离线tarjan)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2874 这题有不连通的情况,特别注意. 觉得是存query的姿势不对,用前向星存了一遍,还是T…… /* ...

  5. HDU 2874 Connections between cities(LCA离线算法实现)

    http://acm.hdu.edu.cn/showproblem.php?pid=2874 题意: 求两个城市之间的距离. 思路: LCA题,注意原图可能不连通. 如果不了解离线算法的话,可以看我之 ...

  6. HDU 2874 Connections between cities(LCA+并查集)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=2874 [题目大意] 有n个村庄,m条路,不存在环,有q个询问,问两个村庄是否可达, 如果可达则输出 ...

  7. HDU2874Connections between cities( LCA )Tarjan

    Problem Description After World War X, a lot of cities have been seriously damaged, and we need to r ...

  8. 洛谷P3379 【模板】最近公共祖先(LCA)

    P3379 [模板]最近公共祖先(LCA) 152通过 532提交 题目提供者HansBug 标签 难度普及+/提高 提交  讨论  题解 最新讨论 为什么还是超时.... 倍增怎么70!!题解好像有 ...

  9. 图论--最近公共祖先问题(LCA)模板

    最近公共祖先问题(LCA)是求一颗树上的某两点距离他们最近的公共祖先节点,由于树的特性,树上两点之间路径是唯一的,所以对于很多处理关于树的路径问题的时候为了得知树两点的间的路径,LCA是几乎最有效的解 ...

随机推荐

  1. OSG学习:移动/缩放/旋转模型

    移动和缩放以及旋转都是对矩阵进行操作,这些操作如果要叠加直接矩阵相乘就可以了. 下面的示例代码中,加入了四个bignathan,一个是默认加入在最中间,一个向上移2单位,一个是向下移2单位且缩放0.5 ...

  2. python获取指定长度的字符串

    from random import Random def random_str(randomlength=31): str = '' chars = 'abcdefghijklmnopqrstuvw ...

  3. linux shell学习(字符串操作)--01

    http://blog.csdn.net/shuanghujushi/article/details/51298672 在bash shell的使用过程中,经常会遇到一些字符串string的操作,下面 ...

  4. Tomcat 7优化配置

    Tomcat 的优化不像其它软件那样,简简单单的修改几个参数就可以了,它的优化主要有三方面,分为系统优化,Tomcat 本身的优化,Java 虚拟机(JVM)调优.系统优化就不在介绍了,接下来就详细的 ...

  5. 第29天:js-数组添加删除、数组和字符串相互转换

    一.添加数组var arr=[1,3,5];arr.push(7,9);//添加7和9到数组arr后面,得到[1,3,5,7,9]1.push();可向数组末尾添加一个或多个元素,并返回新的长度.2. ...

  6. BZOJ 1911 特别行动队(斜率优化DP)

    应该可以看出这是个很normal的斜率优化式子.推出公式搞一搞即可. # include <cstdio> # include <cstring> # include < ...

  7. bzoj2676 Contra

    题意: 给定N,R,Q,S 有N个关卡,初始有Q条命,且任意时刻最多只能有Q条命 每通过一个关卡,会得到u分和1条命,其中u=min(最近一次连续通过的关数,R) 若没有通过这个关卡,将失去一条命,并 ...

  8. MD5 十六进制加密

    MD5的加密方法很多,今天说下MD5的十六进制加密···先贴方法···· class Program { static void Main(string[] args) { //202cb962ac5 ...

  9. Apple - Hdu5160

    Problem Description We are going to distribute apples to n children. Every child has his/her desired ...

  10. [WC2008]游览计划 状压DP,斯坦纳树

    ---题面--- 题解: 这是一道斯坦纳树的题,用状压+spfa来解决 什么是斯坦纳树? 一开始还以为是数据结构来着,其实跟最小生成树很像,大致就是最小生成树只能在各个点之间直接相连,而斯坦纳树则允许 ...