【spark】RDD创建
首先我们要建立 sparkconf 配置文件,然后通过配置文件来建立sparkcontext。
import org.apache.spark._
object MyRdd {
def main(args:Array[String]): Unit ={
//初始化配置:设置主机名和程序主类的名字
val conf = new SparkConf().setMaster("local[*]").setAppName("MyRdd");
//通过conf来创建sparkcontext
val sc = new SparkContext(conf); }
}
然后我们通过 sparkcontext 来创建RDD
创建RDD的几种方式
1.基于程序中的集合创建RDD-作用:主要用于测试
通过 sc.parallelize(collection)方法来创建RDD
/*
* 从scala集合中创建RDD
* 计算:1+2+3+...+100
*/
val nums = List(1,2,3,4,5);//集合
val rdd = sc.parallelize(nums);//创建rdd
val sum = rdd.reduce(_+_);
println(sum);
2.基于本地文件创建RDD-作用:大数据量的测试
"file:///home/hadoop/spark-1.6.0-bin-hadoop2.6/examples/src/main/resources/people.json"
3.基于HDFS创建RDD-作用:生产环境最常用的RDD创建方式
"hdfs://112.74.21.122:9000/user/hive/warehouse/hive_test"
通过sc.textFile(file)方法来读取文件
/*
* 从本地文件系统创建RDD
* 计算 people.json 文件中字符总长度
*/
val rows = sc.textFile("file://")//文件地址或者HDFS文件路径
val length = rows.map(row=>row.length()).reduce(_+_)
println("total chars length:"+length)
能读取文件,当然能保存文件,我们可以把通过 sc.saveAsTextFile("file://") 把 rdd 内容保存到文件中
例如,我们保存把一个rdd保存到了/home/writeout.txt
val rdd = sc.textFile("file:///home/word.txt");
rdd.saveAsTextFile("file:///home/writeout.txt");//把rdd写入/home/writeout.txt
但是我们打开/home文件夹,发现writeout并不是txt文件而是一个文件夹,我们打开文件夹,结构如下

我们保存错了嘛?没有,这时正常的。part-00000代表的是分区,如果有多个分区,会有多个part-xxxxxx的文件。
如果我们要再次读取这个保存的文件并不需要一个一个分区读取,直接读取就可以了,spark会自动加载所有分区数据。
val rdd = sc.textFile("file:///home/writeout/part-00000");//我们并不用这样一个一个读取
val rdd = sc.textFile("file:///home/writeout.txt");//直接这样读取,就会自动把所有分区数据加载到rdd中
4.基于DB、NoSQL(例如HBase)、S3、基于数据流创建RDD
【spark】RDD创建的更多相关文章
- Spark RDD 操作
1. Spark RDD 创建操作 1.1 数据集合 parallelize 可以创建一个能够并行操作的RDD.其函数定义如下: ) scala> sc.defaultParallelism ...
- Spark RDD 核心总结
摘要: 1.RDD的五大属性 1.1 partitions(分区) 1.2 partitioner(分区方法) 1.3 dependencies(依赖关系) 1.4 compute(获取分区迭代列表) ...
- Spark RDD API详解(一) Map和Reduce
RDD是什么? RDD是Spark中的抽象数据结构类型,任何数据在Spark中都被表示为RDD.从编程的角度来看,RDD可以简单看成是一个数组.和普通数组的区别是,RDD中的数据是分区存储的,这样不同 ...
- Spark RDD Operations(1)
以上是对应的RDD的各中操作,相对于MaoReduce只有map.reduce两种操作,Spark针对RDD的操作则比较多 ************************************** ...
- 15.RDD 创建内幕解析
第15课:RDD创建内幕 RDD的创建方式 Spark应用程序运行过程中,第一个RDD代表了Spark应用程序输入数据的来源,之后通过Trasformation来对RDD进行各种算子的转换,来实现具体 ...
- Spark RDD操作(1)
https://www.zybuluo.com/jewes/note/35032 RDD是什么? RDD是Spark中的抽象数据结构类型,任何数据在Spark中都被表示为RDD.从编程的角度来看,RD ...
- Spark RDD概念学习系列之RDD的转换(十)
RDD的转换 Spark会根据用户提交的计算逻辑中的RDD的转换和动作来生成RDD之间的依赖关系,同时这个计算链也就生成了逻辑上的DAG.接下来以“Word Count”为例,详细描述这个DAG生成的 ...
- Spark RDD概念学习系列之RDD的checkpoint(九)
RDD的检查点 首先,要清楚.为什么spark要引入检查点机制?引入RDD的检查点? 答:如果缓存丢失了,则需要重新计算.如果计算特别复杂或者计算耗时特别多,那么缓存丢失对于整个Job的影响是不容 ...
- Spark RDD概念学习系列之rdd持久化、广播、累加器(十八)
1.rdd持久化 2.广播 3.累加器 1.rdd持久化 通过spark-shell,可以快速的验证我们的想法和操作! 启动hdfs集群 spark@SparkSingleNode:/usr/loca ...
随机推荐
- EJB远程客户端和本地客户端
在客户端中使用企业bean 企业bean的客户端通过依赖注入或JNDI查询的方式获得对企业bean实例的引用. 依赖注入是获得对企业bean实例的引用的最简便的方法. (紧耦合的bean之间相互依赖, ...
- android学习四---Activity和Intent
1.android项目资源深入了解 在深入学习android之前,先好好玩玩手机上的应用,大部分程序都有一个图标,点开图标,程序启动,一定时间后,程序会跳转到第一个界面,比如手机QQ,点开图标,会跳出 ...
- SVG Use(转)
转自:http://www.zhangxinxu.com/wordpress/2014/07/introduce-svg-sprite-technology/ 未来必热:SVG Sprite技术介绍 ...
- [设计模式]迭代子模式 Iterator
迭代子模式又叫做游标cursor模式,是对象的行为模式.迭代子模式可以顺序的访问一个聚集中的元素而不必暴露聚集的内部表象. 迭代子模式被广泛的应用在Java语言的API中的几个设计模式之一.在Java ...
- 5 TensorFlow入门笔记之RNN实现手写数字识别
------------------------------------ 写在开头:此文参照莫烦python教程(墙裂推荐!!!) ---------------------------------- ...
- shell相关知识
在bash shell中,$( )与` ` (反引号)都是用来做命令替换用(command substitution)的.所谓的命令替换与我们第五章学过的变量替换差不多,都是用来重组命令行:*完成引号 ...
- 关于python中的查询数据库内容中用到的fetchone()函数和fetchall()函数(转)还有fetchmany()
最近在用python操作mysql数据库时,碰到了下面这两个函数,标记一下: fetchone() : 返回单个的元组,也就是一条记录(row),如果没有结果 则返回 None fetchall() ...
- replace限制文本框只能输入数字,数字和字母等的正则表达式
1.文本框只能输入数字代码(小数点也不能输入) <input onkeyup="this.value=this.value.replace(/\D/g,'')" onafte ...
- 从零到一创建ionic移动app:创建第一个app
新建一个空项目,让它能够在你的虚拟机/手机上跑起来 第一步 新建工程 ionic start myApp blank 一个简单的Web应用我们已经创建完成了,接下来我们就要做一些部署到移动端之前的 ...
- java注解1
http://computerdragon.blog.51cto.com/6235984/1210969 http://blog.csdn.net/it_man/article/details/440 ...