tensorflow学习笔记(3)前置数学知识
tensorflow学习笔记(3)前置数学知识
首先是神经元的模型

接下来是激励函数

神经网络的复杂度计算
层数:隐藏层+输出层
总参数=总的w+b
下图为2层
如下图

w为3*4+4个 b为4*2+2
接下来是损失函数
主流的有均分误差,交叉熵,以及自定义

这里贴上课程里面的代码
# -*- coding: utf-8 -*-
"""
Created on Sat May 26 18:42:08 2018 @author: Administrator
""" import tensorflow as tf
import numpy as np
BATCH_SIZE=8
seed=23455 #基于seed产生随机数
rdm=np.random.RandomState(seed)
#初始化特征值为32个样本*2个特征值
#初始化标签
X=rdm.rand(32,2)
Y_=[[x1+x2+(rdm.rand()/10.0-0.05)] for (x1,x2) in X] #定义输入,参数和输出和传播过程
x=tf.placeholder(tf.float32,shape=(None,2))
y_=tf.placeholder(tf.float32,shape=(None,1))
w1=tf.Variable(tf.random_normal([2,1],stddev=1,seed=1))
y=tf.matmul(x,w1) #定义损失函数以及反向传播方法
loss_mse=tf.reduce_mean(tf.square(y_-y))
train_step=tf.train.GradientDescentOptimizer(0.01).minimize(loss_mse) #会话训练
with tf.Session() as sess:
init_op=tf.global_variables_initializer()
sess.run(init_op)
STEPS=20000
for i in range(STEPS):
start=(i*BATCH_SIZE)%32
end=(i*BATCH_SIZE)%32+BATCH_SIZE
#每次训练抽取start到end的数据
sess.run(train_step,feed_dict={x:X[start:end],y_:Y_[start:end]})
#每500次打印一次参数
if i%500==0:
print("在%d次迭代后,参数为"%(i))
print(sess.run(w1))
#输出训练后的参数
print("\n")
print("FINAL w1 is:",sess.run(w1))
自定义损失函数
loss=tf.reduce_sum(tf.where(tf.greater(y,y_),COST(y-y_),PROFIT(y_-y)))
中间的where是判断y是否大于y_
如图

tensorflow学习笔记(3)前置数学知识的更多相关文章
- 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识
深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...
- 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别
深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...
- TensorFlow学习笔记5-概率与信息论
TensorFlow学习笔记5-概率与信息论 本笔记内容为"概率与信息论的基础知识".内容主要参考<Deep Learning>中文版. \(X\)表示训练集的设计矩阵 ...
- Tensorflow学习笔记2019.01.03
tensorflow学习笔记: 3.2 Tensorflow中定义数据流图 张量知识矩阵的一个超集. 超集:如果一个集合S2中的每一个元素都在集合S1中,且集合S1中可能包含S2中没有的元素,则集合S ...
- tensorflow学习笔记(4)-学习率
tensorflow学习笔记(4)-学习率 首先学习率如下图 所以在实际运用中我们会使用指数衰减的学习率 在tf中有这样一个函数 tf.train.exponential_decay(learning ...
- tensorflow学习笔记——使用TensorFlow操作MNIST数据(2)
tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例 ...
- tensorflow学习笔记——自编码器及多层感知器
1,自编码器简介 传统机器学习任务很大程度上依赖于好的特征工程,比如对数值型,日期时间型,种类型等特征的提取.特征工程往往是非常耗时耗力的,在图像,语音和视频中提取到有效的特征就更难了,工程师必须在这 ...
- TensorFlow学习笔记——LeNet-5(训练自己的数据集)
在之前的TensorFlow学习笔记——图像识别与卷积神经网络(链接:请点击我)中了解了一下经典的卷积神经网络模型LeNet模型.那其实之前学习了别人的代码实现了LeNet网络对MNIST数据集的训练 ...
- tensorflow学习笔记——使用TensorFlow操作MNIST数据(1)
续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有He ...
随机推荐
- 暂存,本人博客有bug,正在全力修复。
当阳光洒满大地,当清晨的凝露如水滴滋润着世间万物,我就在这里.我在这里静静的看着这一切,这宁静的美好.耳边传来的英文歌曲.手里拿着的带着书香的书,时光倒流仿佛回到了多年前的清晨,那时的我每天读书背英语 ...
- js 变速动画函数
//获取任意一个元素的任意一个属性的当前的值---当前属性的位置值 function getStyle(element, attr) { return window.getComputedStyle ...
- 简单几行代码使用百度地图API接口分页获取信息
首发于: 万能助手扩展开发:使用百度地图API接口分页获取信息_电脑计算机编程入门教程自学 http://jianma123.com/viewthread.aardio?threadid=426 使用 ...
- ubuntu18.04安装搜狗输入法
首先,安装Fcitx输入框架 sudo apt install fcitx 其次,上搜狗输入法官网下载Linux版本搜狗输入法(32位和64位根据自己情况,在虚拟机上用浏览器下载即可 然后进入相应的下 ...
- 安装mysql8.13用Navicat Premium链接本地数据库报2059
推荐使用已下命令: ALTER USER 'root'@'localhost' IDENTIFIED BY 'password' PASSWORD EXPIRE NEVER; #修改加密规则 ALTE ...
- @Component注解、@Service注解、@Repository注解、@Controller注解区别
--------------------------------------------------------------------------------------------------- ...
- 模拟MBR Grub故障修复
1. MBR故障修复 备份 mkdir /pp mount /dev/sdb1 /pp dd if=/dev/sda of=/pp/mrb.bak bs=512 count=1 破坏mrb dd ...
- SRM32(8)——ADC和DAC
1.ADC简介 STM32 拥有 1~3 个 ADC(STM32F101/102 系列只有 1 个 ADC)STM32F103至少拥有2个ADC,STM32F103ZE包含3个ADC,这些 ADC 可 ...
- C++编译错误杂记
目录 2018年12月23日 error: no matching function for call to ××× 2018年12月10日 error: expected ')' before '* ...
- php+IIS 配置环境(windows环境)
继php7+apache2.4 配置环境(window环境)后,由于B2C项目准备上线:特此小编在阿里云上搭建PHP7环境,为此特写上搭建过程希望正处于搭建php7+IIS(windows环境)中的朋 ...