Mayor's posters
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 62771   Accepted: 18120

Description

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:

  • Every candidate can place exactly one poster on the wall.
  • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
  • The wall is divided into segments and the width of each segment is one byte.
  • Each poster must completely cover a contiguous number of wall segments.

They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections. 
Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall. 

Input

The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.

Output

For each input data set print the number of visible posters after all the posters are placed.

The picture below illustrates the case of the sample input. 

Sample Input

1
5
1 4
2 6
8 10
3 4
7 10

Sample Output

4

Source

题意:
10000000 长的墙,有n张海报依次贴在墙上,每张海报贴在[a,b]范围,问最后没有完全被覆盖的海报有多少。
代码:
//离散化一:比如对于如下区间集合,[1,1000],[500,2000],[1500,2500].那么
//把所有区间端点1,500,1000,1500,2000,2500离散化后就是1,2,3,4,5,6.离散化
//后所得区间为:[1,3],[2,5],[4,6].可以知道离散化前可见区间有3个,但是离散
//化后只有区间[1,3]和区间[4,6]可见.所以离散化一的方式是有问题的
//离散化二:对于区间端点的离散化,如果离散化之前相邻的两个数不是类似于a与a+1的差距1关系,
//那么就自动在后面的这个数的离散化结果上加1.比如:[1,10],[1,5],[7,10] 离散化后
//的区间为[1,7][1,3],[5,7]
//离散化方式二主要就是让本来不相邻的数继续保持不相邻即可. //离散化之后用二分查找对应的离散化后的点,本题val数组要开大。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn=;
bool vis[maxn*+];
int mp[maxn*+],val[maxn*+],t,n,ans;
struct node
{
int l,r;
}nodes[maxn*+];
int Bsearch(int a,int b,int *c)
{
int l=,r=b-,mid;
while(l<=r){
mid=(l+r)>>;
if(c[mid]==a) return mid;
else if(c[mid]<a) l=mid+;
else r=mid-;
}
return -;
}
void Pushdown(int rt)
{
if(val[rt]>=){
val[rt<<]=val[rt<<|]=val[rt];
}
val[rt]=-;
}
void Update(int ql,int qr,int c,int l,int r,int rt)
{
if(ql<=l&&qr>=r){
val[rt]=c;
return ;
}
Pushdown(rt);
int m=(l+r)>>;
if(ql<=m) Update(ql,qr,c,l,m,rt<<);
if(qr>m) Update(ql,qr,c,m+,r,rt<<|);
}
void Query(int l,int r,int rt)
{
if(val[rt]>=){
if(!vis[val[rt]]) ans++;
vis[val[rt]]=;
return;
}
if(l==r) return;
Pushdown(rt);
int m=(l+r)>>;
Query(l,m,rt<<);
Query(m+,r,rt<<|);
}
int main()
{
scanf("%d",&t);
while(t--){
scanf("%d",&n);
int m=;
for(int i=;i<n;i++){
scanf("%d%d",&nodes[i].l,&nodes[i].r);
mp[m++]=nodes[i].l;mp[m++]=nodes[i].r;
}
sort(mp,mp+m);
m=unique(mp,mp+m)-mp;//去重,加入相关的点
for(int i=m-;i>=;i--){
if(mp[i]-mp[i-]>) mp[m++]=mp[i]-;
}
sort(mp,mp+m);
memset(vis,,sizeof(vis));
memset(val,-,sizeof(val));
for(int i=;i<n;i++){
nodes[i].l=Bsearch(nodes[i].l,m,mp);
nodes[i].r=Bsearch(nodes[i].r,m,mp);
Update(nodes[i].l,nodes[i].r,i,,m-,);
}
ans=;
Query(,m-,);
printf("%d\n",ans);
}
return ;
}

POJ2528 线段树离散化的更多相关文章

  1. poj2528(线段树+离散化)Mayor's posters

    2016-08-15 题意:一面墙,往上面贴海报,后面贴的可以覆盖前面贴的.问最后能看见几种海报. 思路:可以理解成往墙上涂颜色,最后能看见几种颜色(下面就是以涂色来讲的).这面墙长度为1~1000 ...

  2. poj2528 线段树+离散化 (倒序)

    The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign h ...

  3. poj2528 线段树+离散化

    由于坐标可能很大,此时需要离散化,将值转化为对应的坐标. #include<stdio.h> #include<algorithm> using namespace std; ...

  4. [poj2528] Mayor's posters (线段树+离散化)

    线段树 + 离散化 Description The citizens of Bytetown, AB, could not stand that the candidates in the mayor ...

  5. poj-2528线段树练习

    title: poj-2528线段树练习 date: 2018-10-13 13:45:09 tags: acm 刷题 categories: ACM-线段树 概述 这道题坑了我好久啊啊啊啊,,,, ...

  6. POJ 2528 Mayor's posters(线段树+离散化)

    Mayor's posters 转载自:http://blog.csdn.net/winddreams/article/details/38443761 [题目链接]Mayor's posters [ ...

  7. poj 2528 Mayor's posters(线段树+离散化)

    /* poj 2528 Mayor's posters 线段树 + 离散化 离散化的理解: 给你一系列的正整数, 例如 1, 4 , 100, 1000000000, 如果利用线段树求解的话,很明显 ...

  8. [UESTC1059]秋实大哥与小朋友(线段树, 离散化)

    题目链接:http://acm.uestc.edu.cn/#/problem/show/1059 普通线段树+离散化,关键是……离散化后建树和查询都要按照基本法!!!RE了不知道多少次………………我真 ...

  9. poj 2528 Mayor's posters 线段树+离散化技巧

    poj 2528 Mayor's posters 题目链接: http://poj.org/problem?id=2528 思路: 线段树+离散化技巧(这里的离散化需要注意一下啊,题目数据弱看不出来) ...

随机推荐

  1. HDU 3726 Graph and Queries(平衡二叉树)(2010 Asia Tianjin Regional Contest)

    Description You are given an undirected graph with N vertexes and M edges. Every vertex in this grap ...

  2. es6从零学习(三):Class的基本用法

    es6从零学习(三):Class的基本用法 一:定义一个类 //定义类 class Point { constructor(x, y) { this.x = x; this.y = y; } toSt ...

  3. spring框架(1)— 依赖注入

    依赖注入 spring核心容器就是一个超级大工厂,所以的对象(数据源.hibernate SessionFactory等基础性资源)都会被当做spring核心容器的管理对象——spring把容器中的一 ...

  4. lintcode-31-数组划分

    数组划分 给出一个整数数组 nums 和一个整数 k.划分数组(即移动数组 nums 中的元素),使得: 所有小于k的元素移到左边 所有大于等于k的元素移到右边 返回数组划分的位置,即数组中第一个位置 ...

  5. LintCode-41.最大子数组

    最大子数组 给定一个整数数组,找到一个具有最大和的子数组,返回其最大和. 注意事项 子数组最少包含一个数 样例 给出数组[−2,2,−3,4,−1,2,1,−5,3],符合要求的子数组为[4,−1,2 ...

  6. windows批处理学习---01

    一. 标记符号: CR(0D) 命令行结束符 Escape(1B) ANSI转义字符引导符 Space() 常用的参数界定符 Tab() ; = 不常用的参数界定符 + COPY命令文件连接符 * ? ...

  7. redis——持久化方式RDB与AOF分析

    https://blog.csdn.net/u014229282/article/details/81121214 redis两种持久化的方式 RDB持久化可以在指定的时间间隔内生成数据集的时间点快照 ...

  8. C# 4 中使用迭代器的等待任务

    介绍 可能你已经阅读 C#5 关于 async 和 await 关键字以及它们如何帮助简化异步编程的,可惜的是在升级VS2010后短短两年时间,任然没有准备好升级到VS2012,在VS2010和C#4 ...

  9. java 基础 --集合--012

    1, 数组与集合 A:长度不同 数组的长度固定,集合的长度可变 B:内容不同 数组里存储的是同一种类型的元素,而集合可以存储不同类型的元素 C:元素的数据类型问题 数组可以存储基本数据类型,也可以存储 ...

  10. Redis Cluster实现原理

    一.Redis Cluster主要特性和设计     集群目标 1)高性能和线性扩展,最大可以支撑到1000个节点:Cluster架构中无Proxy层,Master与slave之间使用异步replic ...