(原创)Stanford Machine Learning (by Andrew NG) --- (week 3) Logistic Regression & Regularization
coursera上面Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml
我曾经使用Logistic Regression方法进行ctr的预测工作,因为当时主要使用的是成型的工具,对该算法本身并没有什么比较深入的认识,不过可以客观的感受到Logistic Regression的商用价值。
Logistic Regression Model
A. objective function
其中z的定义域是(-INF,+INF),值域是[0,1]

We call this function sigmoid function or logistic function.
We want 0 ≤ hθ(x) ≤ 1 and hθ(x) = g(θTx) 
B. Decision boundary
在 0 ≤ hθ(x) ≤ 1的连续空间内,用logistic regression做分类时,我们可以将hθ(x)等于0.5作为分割点。
- if hθ(x) ≥ 0.5,predict "y = 1";
- if hθ(x) < 0.5,predict "y = 0";
而Decision Boundary就是能够将所有数据点进行很好地分类的 h(x) 边界。
C. Cost Function
Defination:

Because y = 0 or y = 1,and cost function can been writen as below:

Advanced optimization
In order to minimize J(θ), and get θ. Then how to get minθ J(θ) ?
A. Using gradient descent to do optimization
Repeat{
} 
Compute
, we can get (推导过程下方附录)
Repeat{
}
B.其他基于梯度的优化方法
- Conjugate gradient(共轭梯度)
- 牛顿法
- 拟牛顿法
- BFGS(以其发明者Broyden, Fletcher, Goldfarb和Shanno的姓氏首字母命名),公式:

- L-BFGS
- OWLQN
Multi classification
How to do multi classification using logistic regression? (one vs rest)
A. How to train model?
当训练语料标注的类别大于2时,记为n。我们可以训练n个LR模型,每个模型的训练数据正例是第i类的样本,反例是剩余样本。(1≤ i ≤n)

B.How to do prediction?
在 n 个 hθ(x) 中,获得最大 hθ(x) 的类就是x所分到的类,即 
Overfitting
A. How to address overfitting?
a) Reduce number of features.
- Manually select which features to keep.
- Model selection algorithm (later in course).
b) Regularization(规范化)
- Keep all the features, but reduce magnitude/values of all parameters .
- Works well when we have a lot of features, each of which contributes a bit to predicting .
c) Cross-validation(交叉验证)
- Holdout验证: 我们将语料库分成:训练集,验证集和测试集;
- K-fold cross-validation:优势在于同时重复运用随机产生的子样本进行训练和验证,每次的结果验证一次;
B. Regularized linear regression

(式1)
(式2)
C. Normal equation
Non-invertibility(optional/advanced).
suppose m ≤ n m: the number of examples; n: the number of features;
θ = (XTX)-1XTy
由(式1)和(式2)可以得到对应的n+1维参数矩阵。

D. Regularized logistic regression
Regularized cost function:
J(θ) = 
Gradient descent:
Repeat{

} 
Logistic Regression与Linear Regression的关系
Logistic Regression是线性回归的一种,Logistic Regression 就是一个被logistic方程归一化后的线性回归。
Logistic Regression的适用性
- 可用于概率预测,也可用于分类;
- 仅能用于线性问题;
- 各feature之间不需要满足条件独立假设,但各个feature的贡献是独立计算的。
HOMEWORK
好了,既然看完了视频课程,就来做一下作业吧,下面是Logistic Regression部分作业的核心代码:
1.sigmoid.m
m = 0;
n=0;
[m,n] = size(z);
for i = 1:m
for j = 1:n
g(i,j) = 1/(1+e^(-z(i,j)));
end
end
2.costFunction.m
for i =1:m
J = J+(-y(i)*log(sigmoid(X(i,:)*theta)))-(1-y(i))*log(1-sigmoid(X(i,:)*theta));
end
J=J/m;
for j=1:size(theta)
for i=1:m
grad(j)=grad(j)+(sigmoid(X(i,:)*theta)-y(i))*X(i,j);
end
grad(j)=grad(j)/m;
end
3.predict.m
for i=1:m
if(sigmoid(theta'*X(i,:)')>0.5)
p(i)=1;
else
p(i)=0;
endif
end
4.costFunctionReg.m
for i =1:m
J = J+(-y(i)*log(sigmoid(X(i,:)*theta)))-(1-y(i))*log(1-sigmoid(X(i,:)*theta));
end
J=J/m;
for j=2:size(theta)
J = J+(lambda*(theta(j)^2)/(2*m));
end for j=1:size(theta)
for i=1:m
grad(j)=grad(j)+(sigmoid(X(i,:)*theta)-y(i))*X(i,j);
end
grad(j)=grad(j)/m;
end
for j=2:size(theta)
grad(j)=grad(j)+(lambda*theta(j))/m;
end
附录
Logistic regression gradient descent 推导过程

(原创)Stanford Machine Learning (by Andrew NG) --- (week 3) Logistic Regression & Regularization的更多相关文章
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 1) Linear Regression
Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 在Linear Regression部分出现了一些新的名词,这些名 ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 10) Large Scale Machine Learning & Application Example
本栏目来源于Andrew NG老师讲解的Machine Learning课程,主要介绍大规模机器学习以及其应用.包括随机梯度下降法.维批量梯度下降法.梯度下降法的收敛.在线学习.map reduce以 ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 8) Clustering & Dimensionality Reduction
本周主要介绍了聚类算法和特征降维方法,聚类算法包括K-means的相关概念.优化目标.聚类中心等内容:特征降维包括降维的缘由.算法描述.压缩重建等内容.coursera上面Andrew NG的Mach ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 7) Support Vector Machines
本栏目内容来源于Andrew NG老师讲解的SVM部分,包括SVM的优化目标.最大判定边界.核函数.SVM使用方法.多分类问题等,Machine learning课程地址为:https://www.c ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 9) Anomaly Detection&Recommender Systems
这部分内容来源于Andrew NG老师讲解的 machine learning课程,包括异常检测算法以及推荐系统设计.异常检测是一个非监督学习算法,用于发现系统中的异常数据.推荐系统在生活中也是随处可 ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 4) Neural Networks Representation
Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 神经网络一直被认为是比较难懂的问题,NG将神经网络部分的课程分为了 ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 1) Introduction
最近学习了coursera上面Andrew NG的Machine learning课程,课程地址为:https://www.coursera.org/course/ml 在Introduction部分 ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 5) Neural Networks Learning
本栏目内容来自Andrew NG老师的公开课:https://class.coursera.org/ml/class/index 一般而言, 人工神经网络与经典计算方法相比并非优越, 只有当常规方法解 ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 6) Advice for Applying Machine Learning & Machine Learning System Design
(1) Advice for applying machine learning Deciding what to try next 现在我们已学习了线性回归.逻辑回归.神经网络等机器学习算法,接下来 ...
随机推荐
- hasOwnProperty()方法与in操作符
1.hasOwnProperty() 该方法检测属性存在于实例,还是存在于原型,对于存在于实例中的属性则返回true 2.in 使用该操作符时只要通过对象能够访问到的属性都会返回true
- 【EverydaySport】健身笔记——人体肌肉分解图
正面 背面 大肌肉群:胸.背.腿大肌肉群. 建议一周锻炼一次. 小肌肉群:肩.二头肌.三头肌.小臂.小腿.腹肌小肌肉群. 可以一周安排两次. 小腿.小臂肌群属于耐受肌群可以一周安排3次. 建议初学者就 ...
- python近期遇到的一些面试问题(一)
整理一下最近被问到的一些高频率的面试问题.总结一下方便日后复习巩固用,同时希望可以帮助一些朋友们. 1.python的基本数据类型 主要核心类型分为两类不可变类型:数字(int float bool ...
- oracle to_char 返回毫秒级
select to_char(systimestamp,'yyyy-mm-dd hh24:mi:ssxff') time1, 关键在 systimestamp
- python内建方法
abs all any apply basestring bin bool buffer bytearray bytes callable chr classmethod cmp coerce com ...
- edittext 的一个案例
<?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android= ...
- IE中部分版本的浏览器对Select标签设置innerHTML无效的问题
这样写的代码:document.getElementById('data_list').innerHTML = data;//data是ajax返回的数据 结果发现在ie10的兼容模式下面下拉框没有内 ...
- IE6下面的hover不兼容
第一种解决方法: ie6中hover只是对a标签有作用 必须有href=“”,否则都不管用,如果不能写a标签,还想让ie6下有滑过效果,那只能写javascript或者jquery. 例如:ie6是不 ...
- SQL 分页通用存储过程
USE [DB] GO /****** Object: StoredProcedure [dbo].[SP_AspNetPager] Script Date: 10/23/2015 16:37:33 ...
- hdu 1505(最大子矩阵)
City Game Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total S ...