coursera上面Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml

我曾经使用Logistic Regression方法进行ctr的预测工作,因为当时主要使用的是成型的工具,对该算法本身并没有什么比较深入的认识,不过可以客观的感受到Logistic Regression的商用价值。

Logistic Regression Model

A. objective function

      其中z的定义域是(-INF,+INF),值域是[0,1]

We call this function sigmoid function or logistic function.

We want 0 ≤ hθ(x) ≤ 1   and  hθ(x) = g(θTx)  

B. Decision boundary

在 0 ≤ hθ(x) ≤ 1的连续空间内,用logistic regression做分类时,我们可以将hθ(x)等于0.5作为分割点。

  • if  hθ(x) ≥ 0.5,predict "y = 1";
  • if  hθ(x) < 0.5,predict "y = 0";

而Decision Boundary就是能够将所有数据点进行很好地分类的 h(x) 边界。

C. Cost Function

Defination

Because y = 0 or y = 1,and cost function can been writen as below:


Advanced optimization

In order to minimize J(θ),  and get θ. Then how to get minθ J(θ) ?

A. Using gradient descent to do optimization

Repeat{

}            

Compute , we can get (推导过程下方附录)

Repeat{

}

B.其他基于梯度的优化方法

  • Conjugate gradient(共轭梯度)
  • 牛顿法
  • 拟牛顿法
  • BFGS(以其发明者Broyden, Fletcher, Goldfarb和Shanno的姓氏首字母命名),公式:
  • L-BFGS
  • OWLQN

Multi classification

How to do multi classification using logistic regression?   (one vs rest)

A. How to train model?

当训练语料标注的类别大于2时,记为n。我们可以训练n个LR模型,每个模型的训练数据正例是第i类的样本,反例是剩余样本。(1≤ i ≤n)

B.How to do prediction? 

在 n 个 hθ(x) 中,获得最大 hθ(x) 的类就是x所分到的类,即 


Overfitting

A. How to address overfitting?

a) Reduce number of features.

  • Manually select which features to keep.
  • Model selection algorithm (later in course).

b) Regularization(规范化)

  • Keep all the features, but reduce magnitude/values of all parameters .
  • Works well when we have a lot of features, each of which contributes a bit to predicting .

c) Cross-validation(交叉验证)

  • Holdout验证: 我们将语料库分成:训练集,验证集和测试集;
  • K-fold cross-validation:优势在于同时重复运用随机产生的子样本进行训练和验证,每次的结果验证一次;

B. Regularized linear regression

            (式1)

     (式2)

C. Normal equation

Non-invertibility(optional/advanced).

suppose m ≤ n                 m: the number of examples;    n: the number of features;

                θ = (XTX)-1XTy

由(式1)和(式2)可以得到对应的n+1维参数矩阵。

D. Regularized logistic regression

Regularized cost function:

J(θ) =   

   Gradient descent: 

Repeat{


Logistic Regression与Linear Regression的关系

Logistic Regression是线性回归的一种,Logistic Regression 就是一个被logistic方程归一化后的线性回归。


Logistic Regression的适用性

  • 可用于概率预测,也可用于分类;
  • 仅能用于线性问题;
  • 各feature之间不需要满足条件独立假设,但各个feature的贡献是独立计算的。

 HOMEWORK

好了,既然看完了视频课程,就来做一下作业吧,下面是Logistic Regression部分作业的核心代码:

1.sigmoid.m

m = 0;
n=0;
[m,n] = size(z);
for i = 1:m
for j = 1:n
g(i,j) = 1/(1+e^(-z(i,j)));
end
end

2.costFunction.m

for i =1:m
J = J+(-y(i)*log(sigmoid(X(i,:)*theta)))-(1-y(i))*log(1-sigmoid(X(i,:)*theta));
end
J=J/m;
for j=1:size(theta)
for i=1:m
grad(j)=grad(j)+(sigmoid(X(i,:)*theta)-y(i))*X(i,j);
end
grad(j)=grad(j)/m;
end

3.predict.m

for i=1:m
if(sigmoid(theta'*X(i,:)')>0.5)
p(i)=1;
else
p(i)=0;
endif
end

4.costFunctionReg.m

for i =1:m
J = J+(-y(i)*log(sigmoid(X(i,:)*theta)))-(1-y(i))*log(1-sigmoid(X(i,:)*theta));
end
J=J/m;
for j=2:size(theta)
J = J+(lambda*(theta(j)^2)/(2*m));
end for j=1:size(theta)
for i=1:m
grad(j)=grad(j)+(sigmoid(X(i,:)*theta)-y(i))*X(i,j);
end
grad(j)=grad(j)/m;
end
for j=2:size(theta)
grad(j)=grad(j)+(lambda*theta(j))/m;
end

附录

Logistic regression gradient descent 推导过程

(原创)Stanford Machine Learning (by Andrew NG) --- (week 3) Logistic Regression & Regularization的更多相关文章

  1. (原创)Stanford Machine Learning (by Andrew NG) --- (week 1) Linear Regression

    Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 在Linear Regression部分出现了一些新的名词,这些名 ...

  2. (原创)Stanford Machine Learning (by Andrew NG) --- (week 10) Large Scale Machine Learning & Application Example

    本栏目来源于Andrew NG老师讲解的Machine Learning课程,主要介绍大规模机器学习以及其应用.包括随机梯度下降法.维批量梯度下降法.梯度下降法的收敛.在线学习.map reduce以 ...

  3. (原创)Stanford Machine Learning (by Andrew NG) --- (week 8) Clustering & Dimensionality Reduction

    本周主要介绍了聚类算法和特征降维方法,聚类算法包括K-means的相关概念.优化目标.聚类中心等内容:特征降维包括降维的缘由.算法描述.压缩重建等内容.coursera上面Andrew NG的Mach ...

  4. (原创)Stanford Machine Learning (by Andrew NG) --- (week 7) Support Vector Machines

    本栏目内容来源于Andrew NG老师讲解的SVM部分,包括SVM的优化目标.最大判定边界.核函数.SVM使用方法.多分类问题等,Machine learning课程地址为:https://www.c ...

  5. (原创)Stanford Machine Learning (by Andrew NG) --- (week 9) Anomaly Detection&Recommender Systems

    这部分内容来源于Andrew NG老师讲解的 machine learning课程,包括异常检测算法以及推荐系统设计.异常检测是一个非监督学习算法,用于发现系统中的异常数据.推荐系统在生活中也是随处可 ...

  6. (原创)Stanford Machine Learning (by Andrew NG) --- (week 4) Neural Networks Representation

    Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 神经网络一直被认为是比较难懂的问题,NG将神经网络部分的课程分为了 ...

  7. (原创)Stanford Machine Learning (by Andrew NG) --- (week 1) Introduction

    最近学习了coursera上面Andrew NG的Machine learning课程,课程地址为:https://www.coursera.org/course/ml 在Introduction部分 ...

  8. (原创)Stanford Machine Learning (by Andrew NG) --- (week 5) Neural Networks Learning

    本栏目内容来自Andrew NG老师的公开课:https://class.coursera.org/ml/class/index 一般而言, 人工神经网络与经典计算方法相比并非优越, 只有当常规方法解 ...

  9. (原创)Stanford Machine Learning (by Andrew NG) --- (week 6) Advice for Applying Machine Learning & Machine Learning System Design

    (1) Advice for applying machine learning Deciding what to try next 现在我们已学习了线性回归.逻辑回归.神经网络等机器学习算法,接下来 ...

随机推荐

  1. gnu app url[web][5星]

    http://www.gnu.org/software/software.zh-cn.html http://linux.chinaunix.net/news/2010/12/07/1175310.s ...

  2. sunos kernel src leakrs

    https://github.com/joede/libezV24 https://github.com/ysei/siriusSparcV8 https://github.com/omniti-la ...

  3. [session篇]看源码学习session(一)

    假如你是使用过或学习过PHP,你一定觉得很简单.session只不过是$_SESSION就可以搞得,这还不简单只是对一个key-value就能工作了.我觉得可以大多数的phper都是这样的,这是语言本 ...

  4. 2015多校第9场 HDU 5405 Sometimes Naive 树链剖分

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5405 题意: 给你一棵n个节点的树,有点权.        要求支持两种操作: 操作1:更改某个节点的 ...

  5. caffe Python API 之LRN

    net.mylrn = caffe.layers.LRN(net.pool1,local_size=5,alpha=1e-4,beta=0.75) 输出: layer { name: "my ...

  6. Cause: java.lang.ClassCastException: java.lang.String cannot be cast to org.apache.ibatis.mapping.MappedStatement

    我用的是pagehelper 4.2.0,利用其进行表单的分页处理并进行展示,在第一次执行的时候能够看到分页后的结果,刷新一下第二次就显示不出来,控制台出现: Cause: java.lang.Cla ...

  7. [收集]关于MSSQL数据库的一些查询

    sqlserver快速查找所有存储过程中是否包含某字符 --将XXXX替换成你要查找的内容 select name from sysobjects o, syscomments s where o.i ...

  8. Web开发中,页面渲染方案

    转载自:http://www.jianshu.com/p/d1d29e97f6b8 (在该文章中看到一段感兴趣的文字,转载过来) 在Web开发中,有两种主流的页面渲染方案: 服务器端渲染,通过页面渲染 ...

  9. centos安装ss教程

    在CentOS 6.6上安装ShadowSocks服务端 1.查看系统[root@localhost ~]# cat /etc/issue CentOS release 6.6 (Final) [ro ...

  10. make :err Makefile.ssl is older than Makefile.org. Reconfigure the source tree (via './config' or 'perl Configure'), please.

    内核编译时出现错误 Makefile.ssl is older than Makefile.org. Reconfigure the source tree (via './config' or 'p ...