coursera上面Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml

我曾经使用Logistic Regression方法进行ctr的预测工作,因为当时主要使用的是成型的工具,对该算法本身并没有什么比较深入的认识,不过可以客观的感受到Logistic Regression的商用价值。

Logistic Regression Model

A. objective function

      其中z的定义域是(-INF,+INF),值域是[0,1]

We call this function sigmoid function or logistic function.

We want 0 ≤ hθ(x) ≤ 1   and  hθ(x) = g(θTx)  

B. Decision boundary

在 0 ≤ hθ(x) ≤ 1的连续空间内,用logistic regression做分类时,我们可以将hθ(x)等于0.5作为分割点。

  • if  hθ(x) ≥ 0.5,predict "y = 1";
  • if  hθ(x) < 0.5,predict "y = 0";

而Decision Boundary就是能够将所有数据点进行很好地分类的 h(x) 边界。

C. Cost Function

Defination

Because y = 0 or y = 1,and cost function can been writen as below:


Advanced optimization

In order to minimize J(θ),  and get θ. Then how to get minθ J(θ) ?

A. Using gradient descent to do optimization

Repeat{

}            

Compute , we can get (推导过程下方附录)

Repeat{

}

B.其他基于梯度的优化方法

  • Conjugate gradient(共轭梯度)
  • 牛顿法
  • 拟牛顿法
  • BFGS(以其发明者Broyden, Fletcher, Goldfarb和Shanno的姓氏首字母命名),公式:
  • L-BFGS
  • OWLQN

Multi classification

How to do multi classification using logistic regression?   (one vs rest)

A. How to train model?

当训练语料标注的类别大于2时,记为n。我们可以训练n个LR模型,每个模型的训练数据正例是第i类的样本,反例是剩余样本。(1≤ i ≤n)

B.How to do prediction? 

在 n 个 hθ(x) 中,获得最大 hθ(x) 的类就是x所分到的类,即 


Overfitting

A. How to address overfitting?

a) Reduce number of features.

  • Manually select which features to keep.
  • Model selection algorithm (later in course).

b) Regularization(规范化)

  • Keep all the features, but reduce magnitude/values of all parameters .
  • Works well when we have a lot of features, each of which contributes a bit to predicting .

c) Cross-validation(交叉验证)

  • Holdout验证: 我们将语料库分成:训练集,验证集和测试集;
  • K-fold cross-validation:优势在于同时重复运用随机产生的子样本进行训练和验证,每次的结果验证一次;

B. Regularized linear regression

            (式1)

     (式2)

C. Normal equation

Non-invertibility(optional/advanced).

suppose m ≤ n                 m: the number of examples;    n: the number of features;

                θ = (XTX)-1XTy

由(式1)和(式2)可以得到对应的n+1维参数矩阵。

D. Regularized logistic regression

Regularized cost function:

J(θ) =   

   Gradient descent: 

Repeat{


Logistic Regression与Linear Regression的关系

Logistic Regression是线性回归的一种,Logistic Regression 就是一个被logistic方程归一化后的线性回归。


Logistic Regression的适用性

  • 可用于概率预测,也可用于分类;
  • 仅能用于线性问题;
  • 各feature之间不需要满足条件独立假设,但各个feature的贡献是独立计算的。

 HOMEWORK

好了,既然看完了视频课程,就来做一下作业吧,下面是Logistic Regression部分作业的核心代码:

1.sigmoid.m

m = 0;
n=0;
[m,n] = size(z);
for i = 1:m
for j = 1:n
g(i,j) = 1/(1+e^(-z(i,j)));
end
end

2.costFunction.m

for i =1:m
J = J+(-y(i)*log(sigmoid(X(i,:)*theta)))-(1-y(i))*log(1-sigmoid(X(i,:)*theta));
end
J=J/m;
for j=1:size(theta)
for i=1:m
grad(j)=grad(j)+(sigmoid(X(i,:)*theta)-y(i))*X(i,j);
end
grad(j)=grad(j)/m;
end

3.predict.m

for i=1:m
if(sigmoid(theta'*X(i,:)')>0.5)
p(i)=1;
else
p(i)=0;
endif
end

4.costFunctionReg.m

for i =1:m
J = J+(-y(i)*log(sigmoid(X(i,:)*theta)))-(1-y(i))*log(1-sigmoid(X(i,:)*theta));
end
J=J/m;
for j=2:size(theta)
J = J+(lambda*(theta(j)^2)/(2*m));
end for j=1:size(theta)
for i=1:m
grad(j)=grad(j)+(sigmoid(X(i,:)*theta)-y(i))*X(i,j);
end
grad(j)=grad(j)/m;
end
for j=2:size(theta)
grad(j)=grad(j)+(lambda*theta(j))/m;
end

附录

Logistic regression gradient descent 推导过程

(原创)Stanford Machine Learning (by Andrew NG) --- (week 3) Logistic Regression & Regularization的更多相关文章

  1. (原创)Stanford Machine Learning (by Andrew NG) --- (week 1) Linear Regression

    Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 在Linear Regression部分出现了一些新的名词,这些名 ...

  2. (原创)Stanford Machine Learning (by Andrew NG) --- (week 10) Large Scale Machine Learning & Application Example

    本栏目来源于Andrew NG老师讲解的Machine Learning课程,主要介绍大规模机器学习以及其应用.包括随机梯度下降法.维批量梯度下降法.梯度下降法的收敛.在线学习.map reduce以 ...

  3. (原创)Stanford Machine Learning (by Andrew NG) --- (week 8) Clustering & Dimensionality Reduction

    本周主要介绍了聚类算法和特征降维方法,聚类算法包括K-means的相关概念.优化目标.聚类中心等内容:特征降维包括降维的缘由.算法描述.压缩重建等内容.coursera上面Andrew NG的Mach ...

  4. (原创)Stanford Machine Learning (by Andrew NG) --- (week 7) Support Vector Machines

    本栏目内容来源于Andrew NG老师讲解的SVM部分,包括SVM的优化目标.最大判定边界.核函数.SVM使用方法.多分类问题等,Machine learning课程地址为:https://www.c ...

  5. (原创)Stanford Machine Learning (by Andrew NG) --- (week 9) Anomaly Detection&Recommender Systems

    这部分内容来源于Andrew NG老师讲解的 machine learning课程,包括异常检测算法以及推荐系统设计.异常检测是一个非监督学习算法,用于发现系统中的异常数据.推荐系统在生活中也是随处可 ...

  6. (原创)Stanford Machine Learning (by Andrew NG) --- (week 4) Neural Networks Representation

    Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 神经网络一直被认为是比较难懂的问题,NG将神经网络部分的课程分为了 ...

  7. (原创)Stanford Machine Learning (by Andrew NG) --- (week 1) Introduction

    最近学习了coursera上面Andrew NG的Machine learning课程,课程地址为:https://www.coursera.org/course/ml 在Introduction部分 ...

  8. (原创)Stanford Machine Learning (by Andrew NG) --- (week 5) Neural Networks Learning

    本栏目内容来自Andrew NG老师的公开课:https://class.coursera.org/ml/class/index 一般而言, 人工神经网络与经典计算方法相比并非优越, 只有当常规方法解 ...

  9. (原创)Stanford Machine Learning (by Andrew NG) --- (week 6) Advice for Applying Machine Learning & Machine Learning System Design

    (1) Advice for applying machine learning Deciding what to try next 现在我们已学习了线性回归.逻辑回归.神经网络等机器学习算法,接下来 ...

随机推荐

  1. spring-retry 重试机制

    业务场景 应用中需要实现一个功能: 需要将数据上传到远程存储服务,同时在返回处理成功情况下做其他操作.这个功能不复杂,分为两个步骤:第一步调用远程的Rest服务逻辑包装给处理方法返回处理结果:第二步拿 ...

  2. jq 浏览器窗口大小发生变化时

    当调整浏览器窗口的大小时,发生 resize 事件: $(selector).resize(); 实例 对浏览器窗口调整大小进行计数: $(window).resize(function() { $( ...

  3. rabbitmq之核心构架和原理总结(四)

    前言 前面博文已经将安装配置和站点管理介绍了,现在开始正式学习rabbitmq的使用了: rabbitMQ的构架 rabbitmq作为消息队列,一条消息从发布到订阅消费的完整流程为: 消息 --> ...

  4. Django之项目搭建和配置总结(一)

    安装和创建虚拟环境 参考:linux系统下Python虚拟环境的安装和使用 安装Django包 先进入虚拟环境,在联网下执行: pip install django==1.8.7 1.8.7表示dja ...

  5. 简谈const限定符

    const修饰的数据类型是常量类型,常量类型的对象和变量在定义初始化后是不能被更新的.其实只用记住这一个概念,就可以明白const操作对象的方法. 1)定义const常量 最简单的: const in ...

  6. thread_info&内核栈

    转载:http://blog.chinaunix.net/uid-22548820-id-2125152.html 之所以将thread_info结构称之为小型的进程描述符,是因为在这个结构中并没有直 ...

  7. freeradius防止用户异常断开无法重新链接上

    freeradius防止用户异常断开无法重新链接上 http://www.cnblogs.com/klobohyz/archive/2012/02/08/2342532.html 编辑default文 ...

  8. 刷题中熟悉Shell命令之Tenth Line和Transpose File [leetcode]

    首先介绍题目中要用的4个Shell命令 sed awk head tail的常用方法.(打好地基,才能建成高楼!) sed:(转自:http://www.cnblogs.com/barrychiao/ ...

  9. 使用 Visual Studio 部署 .NET Core 应用 ——ASP.NET Core 发布的具体操作

    ASP.NET Core 发布的具体操作 下面使用C# 编写的ASP.NET Core Web项目示例说明发布的全过程. 1.创建项目 选择“文件” > “新建” > “项目”. 在“添加 ...

  10. python资源合集

    Python 官网: https://www.python.org/ Python2.7 doc: https://docs.python.org/2/ Python Package User Gui ...