题目描述

为了避免餐厅过分拥挤,FJ要求奶牛们分3批就餐。每天晚饭前,奶牛们都会在餐厅前排队入内,按FJ的设想所有第3批就餐的奶牛排在队尾,队伍的前端由设定为第1批就餐的奶牛占据,中间的位置就归第2批就餐的奶牛了。由于奶牛们不理解FJ的安排,晚饭前的排队成了一个大麻烦。 第i头奶牛有一张标明她用餐批次D_i(1 <= D_i <= 3)的卡片。虽然所有N(1 <= N <= 30,000)头奶牛排成了很整齐的队伍但谁都看得出来,卡片上的号码是完全杂乱无章的。 在若干次混乱的重新排队后,FJ找到了一种简单些的方法:奶牛们不动,他沿着队伍从头到尾走一遍把那些他认为排错队的奶牛卡片上的编号改掉,最终得到一个他想要的每个组中的奶牛都站在一起的队列,例如111222333或者333222111。哦,你也发现了,FJ不反对一条前后颠倒的队列,那样他可以让所有奶牛向后转,然后按正常顺序进入餐厅。 你也晓得,FJ是个很懒的人。他想知道,如果他想达到目的,那么他最少得改多少头奶牛卡片上的编号。所有奶牛在FJ改卡片编号的时候,都不会挪位置。

输入

第1行: 1个整数:N 第2..N+1行: 第i+1行是1个整数,为第i头奶牛的用餐批次D_i

输出

第1行: 输出1个整数,为FJ最少要改几头奶牛卡片上的编号,才能让编号变成他设想中的样子

样例输入

5
1
3
2
1
1

样例输出

1


题解

dp

由于每个数只可能是1~3,且每一个数的大小只与其上一个数有关。

所以我们可以令f[i][j]表示前i个数,最后一个为j的最小改动次数。

然后分两种情况来dp。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int d[30001] , f[30001][3] , g[30001][3];
int main()
{
int n , i , j , k , ans = 0x3fffffff;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ )
scanf("%d" , &d[i]);
memset(f , 0x3f , sizeof(f));
memset(g , 0x3f , sizeof(g));
f[0][0] = g[0][2] = 0;
for(i = 1 ; i <= n ; i ++ )
for(j = 0 ; j < 3 ; j ++ )
for(k = 0 ; k <= j ; k ++ )
if(d[i] == j + 1)
f[i][j] = min(f[i][j] , f[i - 1][k]);
else
f[i][j] = min(f[i][j] , f[i - 1][k] + 1);
for(i = 1 ; i <= n ; i ++ )
for(j = 0 ; j < 3 ; j ++ )
for(k = j ; k < 3 ; k ++ )
if(d[i] == j + 1)
g[i][j] = min(g[i][j] , g[i - 1][k]);
else
g[i][j] = min(g[i][j] , g[i - 1][k] + 1);
for(i = 0 ; i < 3 ; i ++ )
ans = min(ans , min(f[n][i] , g[n][i]));
printf("%d\n" , ans);
return 0;
}

【bzoj1609】[Usaco2008 Feb]Eating Together麻烦的聚餐 dp的更多相关文章

  1. [BZOJ1609] [Usaco2008 Feb] Eating Together麻烦的聚餐 (dp)

    Description 为了避免餐厅过分拥挤,FJ要求奶牛们分3批就餐.每天晚饭前,奶牛们都会在餐厅前排队入内,按FJ的设想所有第3批就餐的奶牛排在队尾,队伍的前端由设定为第1批就餐的奶牛占据,中间的 ...

  2. BZOJ1609: [Usaco2008 Feb]Eating Together麻烦的聚餐

    1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 938  Solved ...

  3. Bzoj 1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 二分

    1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1272  Solve ...

  4. BZOJ 1609: [Usaco2008 Feb]Eating Together麻烦的聚餐( LIS )

    求LIS , 然后用 n 减去即为answer ---------------------------------------------------------------------------- ...

  5. BZOJ 1609: [Usaco2008 Feb]Eating Together麻烦的聚餐

    1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 Description 为了避免餐厅过分拥挤,FJ要求奶牛们分3批就餐.每天晚饭前,奶牛们都会在餐厅前排队入内,按F ...

  6. 1609: [Usaco2008 Feb]Eating Together麻烦的聚餐

    1609: [Usaco2008 Feb]Eating Together麻烦的聚餐 Time Limit: 10 Sec  Memory Limit: 64 MB Submit: 1010  Solv ...

  7. [Usaco2008 Feb]Eating Together麻烦的聚餐[最长不下降子序列]

    Description 为了避免餐厅过分拥挤,FJ要求奶牛们分3批就餐.每天晚饭前,奶牛们都会在餐厅前排队入内,按FJ的设想所有第3批就餐的奶牛排在队尾,队伍的前端由设定为第1批就餐的奶牛占据,中间的 ...

  8. 【BZOJ】1609: [Usaco2008 Feb]Eating Together麻烦的聚餐(dp+被坑)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1609 首先我不得不说,我被这题坑了.题目前边没有说可以不需要3种牛都有啊!!!!!!!!然后我一直在 ...

  9. [Usaco2008 Feb]Eating Together麻烦的聚餐

    Description 为了避免餐厅过分拥挤,FJ要求奶牛们分3批就餐.每天晚饭前,奶牛们都会在餐厅前排队入内,按FJ的设想所有第3批就餐的奶牛排在队尾,队伍的前端由设定为第1批就餐的奶牛占据,中间的 ...

随机推荐

  1. 【Keras案例学习】 CNN做手写字符分类(mnist_cnn )

    from __future__ import print_function import numpy as np np.random.seed(1337) from keras.datasets im ...

  2. 百度地图 ver2.0 api

    百度地图JavaScript API是一套由JavaScript语言编写的应用程序接口,可帮助您在网站中构建功能丰富.交互性强的地图应用,支持PC端和移动端基于浏览器的地图应用开发,且支持HTML5特 ...

  3. SpringBoot-01:什么是SpringBoot?

    ------------吾亦无他,唯手熟尔,谦卑若愚,好学若饥------------- SpringBoot: Spring Boot可以轻松创建独立的,生产级的基于Spring的应用程序,您可以“ ...

  4. 14、Java并发编程:CountDownLatch、CyclicBarrier和Semaphore

    Java并发编程:CountDownLatch.CyclicBarrier和Semaphore 在java 1.5中,提供了一些非常有用的辅助类来帮助我们进行并发编程,比如CountDownLatch ...

  5. Spring Cloud 熔断机制 -- 断路器

    Spring Cloud 入门教程(七): 熔断机制 -- 断路器 对断路器模式不太清楚的话,可以参看另一篇博文:断路器(Curcuit Breaker)模式,下面直接介绍Spring Cloud的断 ...

  6. DSP5509开发之FPGA接口

    1. DSP5509和FPGA或者CPLD之间是什么接口,DSP相对普通MCU,具有专门的硬件乘法器,程序和数据分开的哈弗结构,特殊的DSP指令,快速的实现各种数字信号处理算法.在一个周期内可以完成一 ...

  7. Linux 下获取本机IP

    http://blog.csdn.net/K346K346/article/details/48231933 int main () { /* struct ifaddrs *ifap, *ifa; ...

  8. /proc/meminfo详解

    cat /proc/meminfo   读出的内核信息进行解释, 下篇文章会简单对读出该信息的代码进行简单的分析. MemTotal:       507480 kB MemFree:         ...

  9. git 取消commit

    git如何撤销上一次commit操作 1.第一种情况:还没有push,只是在本地commit git reset --soft|--mixed|--hard <commit_id> git ...

  10. Ruby 基础教程1-9

    异常 1.异常结构      [ begin]          ...     rescue         [retry]          ...     [ensure]          . ...