因为有着色数的限制,故使用Burnside引理。

添加一个元置换(1,2,,,n)形成m+1种置换,对于每个置换求出循环节的个数,

每个循环节的长度。

则ans=sigma(f(i))/(m+1) %p  (1<=i<=m+1).

其中f(i)是第i种置换下的不动点个数。

可以用dp来求出f(i), 设第i个置换的循环节个数为T, 令dp[i][j][k]表示前i个循环节中使用了j个红色,k个蓝色的不动点个数。进行一次n^3的DP即可。

最后m+1模p意义下的逆元不再叙述。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF (LL)<<
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int res=, flag=;
char ch;
if((ch=getchar())=='-') flag=;
else if(ch>=''&&ch<='') res=ch-'';
while((ch=getchar())>=''&&ch<='') res=res*+(ch-'');
return flag?-res:res;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... struct Per{int a[];}per[];
int dp[][][], n, vis[], num[]; int get_loop(int x)
{
int cnt=;
mem(vis,); mem(num,);
FOR(i,,n) {
if (vis[i]) continue;
++cnt;
int now=i;
while (vis[now]==) vis[now]=, now=per[x].a[now], ++num[cnt];
}
return cnt;
}
int extend_gcd(int a, int b, int &x, int &y)
{
if (a==&&b==) return -;
if (b==){x=; y=; return a;}
int d=extend_gcd(b,a%b,y,x);
y-=a/b*x;
return d;
}
int mod_reverse(int a, int n)
{
int x, y, d=extend_gcd(a,n,x,y);
if (d==) return (x%n+n)%n;
else return -;
}
int main ()
{
int sr, sb, sg, m, p;
LL ans=;
scanf("%d%d%d%d%d",&sr,&sb,&sg,&m,&p);
n=sr+sb+sg;
FOR(i,,m) FOR(j,,n) scanf("%d",&per[i].a[j]);
FOR(j,,n) per[m+].a[j]=j;
FOR(i,,m+) {
int t=get_loop(i);
mem(dp,);
dp[][][]=;
int sum=;
for (int j=; j<=t; ++j) FOR(k,,sr) FOR(l,,sb) {
sum+=num[j];
if (k+l>sum) continue;
if (sum-k-l>=num[j]) dp[j][k][l]=dp[j-][k][l];
if (k>=num[j]) dp[j][k][l]=(dp[j][k][l]+dp[j-][k-num[j]][l])%p;
if (l>=num[j]) dp[j][k][l]=(dp[j][k][l]+dp[j-][k][l-num[j]])%p;
}
ans=(ans+dp[t][sr][sb])%p;
}
ans=ans*mod_reverse(m+,p)%p;
printf("%lld\n",ans);
return ;
}

BZOJ 1004 Cards(Burnside引理+DP)的更多相关文章

  1. bzoj1004: [HNOI2008]Cards(burnside引理+DP)

    题目大意:3种颜色,每种染si个,有m个置换,求所有本质不同的染色方案数. 置换群的burnside引理,还有个Pólya过几天再看看... burnside引理:有m个置换k种颜色,所有本质不同的染 ...

  2. [BZOJ 1004] [HNOI2008] Cards 【Burnside引理 + DP】

    题目链接:BZOJ - 1004 题目分析 首先,几个定义和定理引理: 群:G是一个集合,*是定义在这个集合上的一个运算. 如果满足以下性质,那么(G, *)是一个群. 1)封闭性,对于任意 a, b ...

  3. BZOJ 1004 Cards(Burnside引理+DP)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1004 题意:三种颜色的扑克牌各有Sr,Sb,Sg张.给出m种置换.两种染色方案在某种置换 ...

  4. [bzoj 1004][HNOI 2008]Cards(Burnside引理+DP)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 分析: 1.确定方向:肯定是组合数学问题,不是Polya就是Burnside,然后题目上 ...

  5. BZOJ 1004 HNOI2008 Cards Burnside引理

    标题效果:特定n张卡m换人,编号寻求等价类 数据保证这m换人加上置换群置换后本身构成 BZOJ坑爹0.0 条件不那么重要出来尼玛怎么做 Burnside引理--昨晚为了做这题硬啃了一晚上白书0.0 都 ...

  6. bzoj 1004 burnside 引理+DP

    对于burnside引理需要枚举染色,这道题属于burnside的一种简单求解的方法,就是polya,我们可以使每一种置换中的循环节中的元素的颜色都相同,那么这样的话就可以直接DP了,我们可以将m个置 ...

  7. 【bzoj1004】[HNOI2008]Cards Burnside引理+背包dp

    题目描述 用三种颜色染一个长度为 $n=Sr+Sb+Sg$ 序列,要求三种颜色分别有 $Sr,Sb,Sg$ 个.给出 $m$ 个置换,保证这 $m$ 个置换和置换 ${1,2,3,...,n\choo ...

  8. BZOJ1004: [HNOI2008]Cards(Burnside引理 背包dp)

    Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4255  Solved: 2582[Submit][Status][Discuss] Descript ...

  9. bzoj 1004 Cards & poj 2409 Let it Bead —— 置换群

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1004 关于置换群:https://www.cnblogs.com/nietzsche-oie ...

随机推荐

  1. jxls-2.x导出excel入门——基本操作

    之前随笔使用的是1.x的比较古老的版本了,已经不再维护,接下来使用较新的2.x的版本进行导出 之前一直按照其他的博客与官网的随笔进行导出,发现一直报错,后面更换了POI的版本为3.16(因为jxls也 ...

  2. object转List<XXX>的问题

    List<object> demo(object a) { List<object> res = new List<object>(); object c = a; ...

  3. python的bif介绍

    Python是面向对象的解释性程序设计语言,Python的语法简洁,特点是用空白符作为语句缩进. BIF(bulit in function)内置函数,就是Python自身提供的函数功能,编程者直接使 ...

  4. Java:当前线程运行完毕,再运行后续逻辑

    一.问题描述 在程序设计中,可能存在这样的情景:主线程中存在一个子线程,子线程需要在执行完毕后为后续代码逻辑提供参数.但在代码执行时,子进程还没执行完毕,后续的代码已经开始执行了,这时候就会出现参数为 ...

  5. Ubentu编译Android源码(AOSP)

    前言: 一直想要编译一下Android 源码,之前去google 看,下载要下载repo. 当时很懵逼,repo 是个什么?(repo 是一个python 脚本,因为Android 源码git 仓库太 ...

  6. SpringBoot学习:获取yml和properties配置文件的内容

    项目下载地址:http://download.csdn.net/detail/aqsunkai/9805821 (一)yml配置文件: pom.xml加入依赖: <!-- 支持 @Configu ...

  7. docker in docker

    docker run --rm可以从一个镜像启动容器,并在容器执行完成后自动删除,这在计算任务中非常有用. 例如,我们通过以下步骤完成计算任务容器的启动: 1 将输入数据通过卷挂载方式连接到计算任务容 ...

  8. uvaoj 133 - The Dole Queue(逻辑,环形队列数数)

    https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  9. 在nginx环境下,直接用域名访问(首页)

    ①: server { listen 80; server_name www.njm1.com; location = / { #=/规则可以直接访问域名.如:www.njm1.com.跳转到http ...

  10. Python学习-猜数字游戏

    菩萨蛮·黄鹤楼 茫茫九派流中国,沉沉一线穿南北.烟雨莽苍苍,龟蛇锁大江. 黄鹤知何去,剩有游人处.把酒酹滔滔,心潮逐浪高! --coding:UTF-8-- import random secret ...