Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 12802   Accepted: 4998

Description

The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 < a < b <= n and gcd(a,b) = 1 arranged in increasing order. The first few are
F2 = {1/2}

F3 = {1/3, 1/2, 2/3}

F4 = {1/4, 1/3, 1/2, 2/3, 3/4}

F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5}

You task is to calculate the number of terms in the Farey sequence Fn.

Input

There are several test cases. Each test case has only one line, which contains a positive integer n (2 <= n <= 106). There are no blank lines between cases. A line with a single 0 terminates the input.

Output

For each test case, you should output one line, which contains N(n) ---- the number of terms in the Farey sequence Fn.

Sample Input

2
3
4
5
0

Sample Output

1
3
5
9

Source

POJ Contest,Author:Mathematica@ZSU
/**
题意:求F[i] 的元素的个数,并且0<a<b<=i, gcd(a,b)=1
做法:欧拉 用phi[n]存储小于等于n的素数的个数,然后f[i] = phi[i] + f[i]
**/
#include <iostream>
#include <string.h>
#include <cmath>
#include <algorithm>
#include <stdio.h>
#define maxn 1000100
using namespace std;
long long mmap[maxn];
int phi[maxn];
long long n;
void geteuler()
{
memset(phi,,sizeof(phi));
phi[] = ;
for(int i=; i<=maxn; i++)
{
if(!phi[i])
{
for(int j=i; j<=maxn; j+=i)
{
if(!phi[j])
phi[j] = j;
phi[j] = phi[j]/i*(i-);
}
}
}
}
int main()
{
geteuler();
mmap[] = ;
for(int i=; i<=maxn; i++)
{
mmap[i] = mmap[i-] + phi[i];
}
//freopen("in.txt","r",stdin);
while(~scanf("%lld",&n))
{
if(n == ) break;
printf("%lld\n",mmap[n]);
}
return ;
}

POJ - 2478的更多相关文章

  1. 欧拉函数 &【POJ 2478】欧拉筛法

    通式: $\phi(x)=x(1-\frac{1}{p_1})(1-\frac{1}{p_2})(1-\frac{1}{p_3}) \cdots (1-\frac{1}{p_n})$ 若n是质数p的k ...

  2. POJ 2478 Farey Sequence(欧拉函数前n项和)

    A - Farey Sequence Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u ...

  3. poj 2478 Farey Sequence(欧拉函数是基于寻求筛法素数)

    http://poj.org/problem?id=2478 求欧拉函数的模板. 初涉欧拉函数,先学一学它主要的性质. 1.欧拉函数是求小于n且和n互质(包含1)的正整数的个数. 记为φ(n). 2. ...

  4. POJ 2478 欧拉函数打表的运用

    http://poj.org/problem?id=2478 此题只是用简单的欧拉函数求每一个数的互质数的值会超时,因为要求很多数据的欧拉函数值,所以选用欧拉函数打表法. PS:因为最后得到的结果会很 ...

  5. poj 3090 &amp;&amp; poj 2478(法雷级数,欧拉函数)

    http://poj.org/problem?id=3090 法雷级数 法雷级数的递推公式非常easy:f[1] = 2; f[i] = f[i-1]+phi[i]. 该题是法雷级数的变形吧,答案是2 ...

  6. POJ 2478 Farey Sequence

     名字是法雷数列其实是欧拉phi函数              Farey Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  7. poj 2478 Farey Sequence 欧拉函数前缀和

    Farey Sequence Time Limit: 1000MS   Memory Limit: 65536K       Description The Farey Sequence Fn for ...

  8. 【欧拉函数】 poj 2478

    递推法求欧拉函数: #include <iostream> #include <cstdio> #include <cstring> using namespace ...

  9. hdu1787 GCD Again poj 2478 Farey Sequence 欧拉函数

    hdu1787,直接求欧拉函数 #include <iostream> #include <cstdio> using namespace std; int n; int ph ...

随机推荐

  1. Linux实验一

    一.Linux 简介 1.Linux 就是一个操作系统,就像你多少已经了解的 Windows(xp,7,8)和 Max OS , 我们的 Linux 也就是系统调用和内核那两层,当然直观的来看,我们使 ...

  2. 删边(cip)

    删边(cip) 给出一个没有重边和自环的无向图,现在要求删除其中两条边,使得图仍然保持连通. 你的任务是计算有多少组不合法的选边方案.注意方案是无序二元组. Sol 神题,无从下手啊. 考虑点dfs建 ...

  3. NOIP系列

    NOIP2015运输计划 唉 真是 这题 卡死我了 tarjan离线lca复杂度O(n) 最后各种卡常,多交几遍才A(洛谷104ms) %%%zk学长609ms 注意二分的时候左边界要定成0 根据题意 ...

  4. Linux内核中的常用宏container_of其实很简单

    http://blog.csdn.net/npy_lp/article/details/7010752 通过一个结构体变量的地址,求该结构体的首地址. #ifndef CONTAINER_OF #de ...

  5. Django Session配置

    Django Session的三种存储方式 SESSION_ENGINE='django.contrib.sessions.backends.db' # default 保存到数据库中,依赖 'dja ...

  6. DOM基本代码二

    ------------------------------- <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xh ...

  7. 【poj2104-求区间第k大数(不修改)】主席树/可持续化线段树

    第一道主席树~然而是道比较水的...因为它不用修改... 转载一个让我看懂的主席树的讲解吧:http://blog.csdn.net/regina8023/article/details/419106 ...

  8. 「6月雅礼集训 2017 Day7」电报

    [题目大意] 有n个岛屿,第i个岛屿有有向发射站到第$p_i$个岛屿,改变到任意其他岛屿需要花费$c_i$的代价,求使得所有岛屿直接或间接联通的最小代价. $1 \leq n \leq 10^5, 1 ...

  9. 集合类HashMap,HashTable,ConcurrentHashMap区别?

    1.HashMap 简单来说,HashMap由数组+链表组成的,数组是HashMap的主体,链表则是主要为了解决哈希冲突而存在的,如果定位到的数组位置不含链表(当前entry的next指向null), ...

  10. 崩坏3mmd中的渲染技术研究

    http://youxiputao.com/articles/11839 主要是参考该篇文章做一个微小的复盘. 漫反射与高光 文章中的漫反射与高光并不是类似于普通的 resultCol = Diffu ...