BZOJ1005的弱化版,不想写高精度就可以写这题嘿嘿嘿

  purfer编码如何生成?每次将字典序最小的叶子节点删去并将其相连的点加入序列中,直到树上剩下两个节点,所以一棵有n个节点的树purfer编码长度为n-2。

  purfer编码如何还原一棵树?从前往后扫purfer编码,每次找到不在编码中的没有被选择过的字典序最小的点,并将purfer编码第一个点与这个点连边并删去。

  purfer编码的性质?

  ①度数为d[i]的点在purfer编码中出现d[i]-1次。

  ②每一个purfer编码对应一棵唯一的树。

  知道了这些之后,我们就能大概有一个思路了,求多少棵树相当于求多少个purfer编码满足条件。

  第i个点度数为d[i],那么在purfer编码中出现d[i]-1次,编码的长度为n-2,于是总的方案数为:

  

  虽然答案不会爆long long但是计算过程会爆,于是必须分解质因数来写。

#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn=,inf=1e9;
int n,sum;
int cnt[maxn],d[maxn];
ll ans=;
void read(int &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
void dec(int x,int y)
{
for(int i=;i*i<=x;i++)
while(x%i==)cnt[i]+=y,x/=i;
if(x^)cnt[x]+=y;
}
ll power(ll a,int b)
{
ll ans=;
while(b)
{
if(b&)ans*=a;
a*=a;
b>>=;
}
return ans;
}
int main()
{
read(n);
for(int i=;i<=n;i++)
{
read(d[i]);sum+=d[i]-;
if(!d[i]&&n!=)return puts(""),;
}
if(sum!=n-)return puts(""),;
for(int j=;j<=n-;j++)dec(j,);
for(int i=;i<=n;i++)
for(int j=;j<d[i];j++)
dec(j,-);
for(int i=;i<=n-;i++)
if(cnt[i])ans*=power(i,cnt[i]);
printf("%lld\n",ans);
return ;
}

bzoj1211: [HNOI2004]树的计数(purfer编码)的更多相关文章

  1. bzoj1211: [HNOI2004]树的计数 prufer编码

    题目链接 bzoj1211: [HNOI2004]树的计数 题解 prufer序 可重排列计数 代码 #include<bits/stdc++.h> using namespace std ...

  2. BZOJ1211: [HNOI2004]树的计数

    1211: [HNOI2004]树的计数 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1245  Solved: 383[Submit][Statu ...

  3. bzoj 1211: [HNOI2004]树的计数 -- purfer序列

    1211: [HNOI2004]树的计数 Time Limit: 10 Sec  Memory Limit: 162 MB Description 一个有n个结点的树,设它的结点分别为v1, v2, ...

  4. prufer BZOJ1211: [HNOI2004]树的计数

    以前做过几题..好久过去全忘了. 看来是要记一下... [prufer] n个点的无根树(点都是标号的,distinct)对应一个 长度n-2的数列 所以 n个点的无根树有n^(n-2)种 树 转 p ...

  5. bzoj1211: [HNOI2004]树的计数(prufer序列+组合数学)

    1211: [HNOI2004]树的计数 题目:传送门 题解: 今天刚学prufer序列,先打几道简单题 首先我们知道prufer序列和一颗无根树是一一对应的,那么对于任意一个节点,假设这个节点的度数 ...

  6. 【prufer编码】BZOJ1211 [HNOI2004]树的计数

    Description 给定一棵树每个节点度的限制为di,求有多少符合限制不同的树. Solution 发现prufer码和度数必然的联系 prufer码一个点出现次数为它的度数-1 我们依然可以把树 ...

  7. BZOJ1211:[HNOI2004]树的计数(组合数学,Prufer)

    Description 一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,编程需要 ...

  8. bzoj1211: [HNOI2004]树的计数 prufer序列裸题

    一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di ...

  9. BZOJ1211: [HNOI2004]树的计数(prufer序列)

    Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2987  Solved: 1111[Submit][Status][Discuss] Descript ...

随机推荐

  1. Java+Selenium 3.x 实现Web自动化 - 1.自动化准备

    (一)自动化准备 说明:本文主要记录了基于公司现有项目(一个电子商务平台),从0开始实现UI自动化的历程.从准备阶段,部分内容直接省略了基础知识,一切以最终做成自动化项目为目标,难免会有晦涩之处.文章 ...

  2. 第四模块:网络编程进阶&数据库开发 第2章·MySQL数据库开发

    01-MySQL开篇 02-MySQL简单介绍 03-不同平台下安装MySQL 04-Windows平台MySQL密码设置与破解 05-Linux平台MySQL密码设置与破解 06-Mac平台MySQ ...

  3. 一段代码-Java

    在打算写这么一篇文章的时候,想到很多,觉得要是全都写下来的话,估计BZ也不知道要写多少,总之,好多吧!那么,就让BZ一切从简... 我们知道java它的特殊性在于,用它所写代码的运行是依靠自己的一套j ...

  4. STL之--插入迭代器(back_inserter,inserter,front_inserter的区别)

    除了普通迭代器,C++标准模板库还定义了几种特殊的迭代器,分别是插入迭代器.流迭代器.反向迭代器和移动迭代器,定义在<iterator>头文件中,下面主要介绍三种插入迭代器(back_in ...

  5. MD5接口解密操作_接口签名校验

    很多HTTP接口在传参时,需要先对接口的参数进行数据签名加密如以下POST接口 http://localhost:8080/pinter/com/userInfo 参数为{"phoneNum ...

  6. day-20 tensorflow持久化之入门学习

    如果不对模型参数进行保存,当训练结束以后,模型也在内存中被释放,下一轮又需要对模型进行重新训练,有没有一种方法,可以利用之前已经训练好的模型参数值,直接进行模型推理或者继续训练?这里需要引入一个数据之 ...

  7. Kali渗透测试工具-nslookup

    1.交互模式 终端输入nslookup进入交互模式 (1)查询A地址记录(默认) set q=a A记录简单理解将域名转换成对应的IP地址 (2)查询mail exchanger set q=mx m ...

  8. Mybatis generator自动生成mybatis配置和类信息

    自动生成代码方式两种: 1.命令形式生成代码,详细讲解每一个配置参数. 2.Eclipse利用插件形式生成代码. 安装插件方式: eclipse插件安装地址:http://mybatis.google ...

  9. NFC学习总结

    NFC 学习总结 1.NFC 的基本概念 NFC 是 Near FieldCommunication 的缩写,即距离无线通信技术.由飞利浦公司和索尼公司共同开发的NFC 是一种非接触式识别和互联技术, ...

  10. IE中的activex控件

    1.tree控件 DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"><HTML><HE ...