1833: [ZJOI2010]count 数字计数

Time Limit: 3 Sec  Memory Limit: 64 MB
Submit:
2494  Solved: 1101
[Submit][Status][Discuss]

Description

给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次。

Input

输入文件中仅包含一行两个整数a、b,含义如上所述。

Output

输出文件中包含一行10个整数,分别表示0-9在[a,b]中出现了多少次。

Sample Input

1 99

Sample Output

9 20 20 20 20 20 20 20 20
20

HINT

30%的数据中,a<=b<=10^6;
100%的数据中,a<=b<=10^12。

Source

Day1

Solution

裸的数位DP,但其实并不是特别的水

首先F[i][j][k]表示位数为i的最高位为j的k种数的个数

按照十进制拆分,预处理后统计答案

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
long long L,R;
long long F[][][],ans1[],ans2[];
void prework()
{
for (int i=; i<=; i++) F[][i][i]=;
long long tmp=;
for (int i=; i<=; i++)
{
tmp*=;
F[i][][]=F[i-][][]*+F[i-][][]+tmp;
for (int j=; j<=; j++)
F[i][][j]=F[i-][][j]*+F[i-][j][j];
for (int j=; j<=; j++)
{
F[i][j][]=F[i-][][]*+F[i-][][];
for (int k=; k<=; k++)
if (j==k)
F[i][j][k]=F[i-][][k]*+F[i-][k][k]+tmp;
else
F[i][j][k]=F[i-][][k]*+F[i-][k][k];
}
}
}
long long cf(int x)
{
long long re=;
for (int i=; i<x; i++)
re*=;
return re;
}
void Calc(long long x,long long *ans)
{
int digit[]={},len=; long long y=x;
while (x) {digit[++len]=x%; x/=;}
for (int i=; i<len; i++)
for (int j=; j<=; j++)
for (int k=; k<=; k++)
ans[k]+=F[i][j][k];
for (int i=len; i>=; i--)
{
for (int j=; j<=digit[i]-; j++)
{
if (i==len && j==) continue;
for (int k=; k<=; k++) ans[k]+=F[i][j][k];
}
ans[digit[i]]+=y%cf(i)+;
}
}
int main()
{
prework();
scanf("%lld%lld",&L,&R);
Calc(L-,ans1); Calc(R,ans2);
printf("%lld",ans2[]-ans1[]);
for (int i=; i<=; i++) printf(" %lld",ans2[i]-ans1[i]);
return ;
}

自己一开始YY的出错了..

【BZOJ-1833】count数字计数 数位DP的更多相关文章

  1. UVA.1640.The Counting Problem / BZOJ.1833.[ZJOI2010]数字计数(数位DP)

    题目链接 \(Description\) 求\([l,r]\)中\(0,1,\cdots,9\)每个数字出现的次数(十进制表示). \(Solution\) 对每位分别DP.注意考虑前导0: 在最后统 ...

  2. bzoj1833: [ZJOI2010]count 数字计数(数位DP+记忆化搜索)

    1833: [ZJOI2010]count 数字计数 题目:传送门 题解: 今天是躲不开各种恶心DP了??? %爆靖大佬啊!!! 据说是数位DP裸题...emmm学吧学吧 感觉记忆化搜索特别强: 定义 ...

  3. 1833: [ZJOI2010]count 数字计数——数位dp

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1833 省选之前来切一道裸的数位dp.. 题意 统计[a,b]中0~9每个数字出现的次数(不算 ...

  4. [bzoj1833][ZJOI2010]count 数字计数——数位dp

    题目: (传送门)[http://www.lydsy.com/JudgeOnline/problem.php?id=1833] 题解: 第一次接触数位dp,真的是恶心. 首先翻阅了很多很多一维dp,因 ...

  5. bzoj1833: [ZJOI2010]count 数字计数 数位dp

    bzoj1833 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. O ...

  6. BZOJ 1833 count 数字计数

    sb数位dp. #include<iostream> #include<cstdio> #include<cstring> #include<algorith ...

  7. BZOJ 1833 ZJOI2010 count 数字计数 数位DP

    题目大意:求[a,b]间全部的整数中0~9每一个数字出现了几次 令f[i]为i位数(算前导零)中每一个数出现的次数(一定是同样的,所以仅仅记录一个即可了) 有f[i]=f[i-1]*10+10^(i- ...

  8. BZOJ 1833 数字计数 数位DP

    题目链接 做的第一道数位DP题,听说是最基础的模板题,但还是花了好长时间才写出来..... 想深入了解下数位DP的请点这里 先设dp数组dp[i][j][k]表示数位是i,以j开头的数k出现的次数 有 ...

  9. 【题解】P2602 数字计数 - 数位dp

    P2602 [ZJOI2010]数字计数 题目描述 给定两个正整数 \(a\) 和 \(b\) ,求在 \([a,b]\) 中的所有整数中,每个数码(digit)各出现了多少次. 输入格式 输入文件中 ...

随机推荐

  1. nginx相关

    定时切割nginx日志#!/bin/bash #desc: cut nginx log #this script run at 00:00 LOG_PATH='/usr/local/nginx/log ...

  2. 配置Tomcat使用Redis作为session管理

    1. 在 tomcat/lib 中增加以下jar包 commons-pool2-.jar jedis-.jar tomcat-redis-session-manager-.jar 2. 修改tomca ...

  3. StringBuffer and StringBuilder

    As of release JDK 5, this class has been supplemented with an equivalent class designed for use by a ...

  4. 快速判断素数 --Rabin-Miller算法

    以前我在判断素数上一直只会 sqrt(n) 复杂度的方法和所谓的试除法(预处理出sqrt(n)以内的素数,再用它们来除). (当然筛选法对于判断一个数是否是素数复杂度太高) 现在我发现其实还有一种方法 ...

  5. codevs 3369 膜拜

    3369 膜拜 http://codevs.cn/problem/3369/ 题目描述 Description 神牛有很多-当然-每个同学都有自己衷心膜拜的神牛.某学校有两位神牛,神牛甲和神牛乙.新入 ...

  6. 别再迷信 zepto 了

    希望网上公开课的老师们不要再讲移动端网页用zepto了,坑了无数鸟啊 ~~~. 1.自己/公司/项目组所写和所积累(网上下的)的js函数都是以jQuery插件的写法来写的,如果要换到zepto上的话那 ...

  7. C8051逆向电阻屏:头儿拍脑袋说电阻屏IC好赚钱3块钱成本能卖20几块。,一个月不分昼夜逆向成功后头儿说电阻屏已经被市场淘汰请放弃治疗。

    参考: 书籍,<圈圈教你玩USB>  C8051F单片机快速入门:http://www.waveshare.net/Left_Column/C8051F_Application_Notes ...

  8. Cadence 建立封装:多个引脚于芯片内部连接的封装建立方式

    Ti 家有一种片子,型号为CSD19534Q5A.此芯片的外观样式如图: 可以看到,这个片子共有8个引脚,其中5.6.7和8这四个引脚的内部是连接在一起的. Ti 在数据手册中也介绍了封装的样式: 下 ...

  9. ElasticSearch入门系列(四)分布式初探

    序言:ElasticSearch致力于隐藏分布式系统的复杂性,以下的操作都是在底层自动完成的: 将你的文档分区到不同的容器或者分片(shards),他们可以存在于一个或多个节点中 将分片均匀的分配到各 ...

  10. 把php上传sae问题要使用IO

    应用移植指南 一,为什么要移植应用 SAE禁止IO写操作,代码目录不能写入.这意味着普通程序的上传图片.生成缓存等操作都不能在SAE上正常运行,这时候你需要对这些代码进行修改后才能让你的程序运行在SA ...