题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1497

分析:

这是在有向图中的问题,且边依赖于点,有向图中存在点、边之间的依赖关系可以考虑最大权闭合子图

假设a与b之间有权值为c的边(根据题意是双向边)

那么我们可以建一个新节点,点的权值为c,并指向a点和b点(单向),同时断掉原本a,b之间的双向边,a,b的点的权值是它们的花费(负的)

那么对于原问题就转化成了求最大权闭合子图的问题了

————————————————————————————————————————————————————————————————

                           最大权闭合子图

定义:有向图中选出一个点集V',必须满足对于V‘中的每个点,它的后继也在V’中,选出所有点权值和最大的点集V‘

算法:

弄一个源点S,汇点T,S连向所有权值为正的点,容量为点的权值,所有权值为负的点连向T,容量为点的权值的绝对值。

最后ans=图G中所有权值为正的节点的和-最小割

证明:http://wenku.baidu.com/link?url=Q7LKOvCRFeMQkY1WulrZTAHjN3ud8gbhuqUOKwPbwmGDAmCB0_URdEkJ59WKWVRGn9xSg9TgbWSmhhBIMxvGS2wMbENrxre6ZuSeO2v3mX7

然后这里我也来说一说:

1、首先因为原图中的边全是+inf,所以割边一定是S连出的边或者连向T的边

2、假设最小割割完后,S所在集合为A,T所在集合为B,那么A和B一定是闭合子图(S,T点除外)

因为如果假设A不是闭合子图,那么就说明A中的某一个节点的后继在B中,也就说明最小割把这条边给割掉了,但是原图中的边全是inf,所以不可能被割掉,所以假设不成立,所以A一定是闭合子图,B也一定是闭合子图(同理)

3、接下来我们只要说明对于最小割情况下的A集合,一定是最大的闭合权子图

对于随便任意一个割C(当然还是不会割掉容量inf的边)

则C为B中所有权值为正的点权和(即S连出的边被割掉的总量)+B中所有权值为负的点权绝对值和(即连向T的边被割掉的总量)(C=x1+y1)

设A集合对应的闭合图的权值和W,则W=A中权值为正的节点的权值和-A中权值为负的节点的权值绝对值和(W=x2-y2)

相加得W+C=x1+x2+y1-y2

y1和y2显然相等

所以W+C=x1+x2=原图中所有权值为正的点权和(这是个常数!)

所以C越小,W就越大,于是就相当于求最小割了

——————————————————————————————————————————————————————————————————

其实这一题有更优的算法,详见2007年集训队论文

[BZOJ 1497][NOI 2006]最大获利(最大权闭合子图)的更多相关文章

  1. P4174 [NOI2006]最大获利 (最大权闭合子图)

    P4174 [NOI2006]最大获利 (最大权闭合子图) 题目链接 题意 建\(i\)站台需要\(p_i\)的花费,当\(A_i,B_i\)都建立时获得\(C_i\)的利润,求最大的利润 思路 最大 ...

  2. 【BZOJ】1497: [NOI2006]最大获利 最大权闭合子图或最小割

    [题意]给定n个点,点权为pi.m条边,边权为ci.选择一个点集的收益是在[点集中的边权和]-[点集点权和],求最大获利.n<=5000,m<=50000,0<=ci,pi<= ...

  3. BZOJ1497[NOI2006]最大获利——最大权闭合子图

    题目描述 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成 ...

  4. bzoj1497 [NOI2006]最大获利 最大权闭合子图

    链接 https://www.lydsy.com/JudgeOnline/problem.php?id=1497 思路 最大权闭合子图的裸题 一开始知道是这个最大权闭合子图(虽然我不知道名字),但是我 ...

  5. BZOJ 4873 [Shoi2017]寿司餐厅 | 网络流 最大权闭合子图

    链接 BZOJ 4873 题解 当年的省选题--还记得蒟蒻的我Day1 20分滚粗-- 这道题是个最大权闭合子图的套路题.严重怀疑出题人就是先画好了图然后照着图编了个3000字的题面.和我喜欢的妹子当 ...

  6. BZOJ 1565 / P2805 [NOI2009]植物大战僵尸 (最大权闭合子图 最小割)

    题意 自己看吧 BZOJ传送门 分析 - 这道题其实就是一些点,存在一些二元限制条件,即如果要选uuu则必须选vvv.求得到的权值最大是多少. 建一个图,如果选uuu必须选vvv,则uuu向vvv连边 ...

  7. bzoj1497 最大获利(最大权闭合子图)

    题目链接 思路 对于每个中转站向\(T\)连一条权值为建这个中转站代价的边.割掉这条边表示会建这个中转站. 对于每个人向他的两个中转站连一条权值为\(INF\)的边.然后从\(S\)向这个人连一条权值 ...

  8. BZOJ 1565 植物大战僵尸(拓扑排序+最大权闭合子图)

    图中的保护关系就类似于最大权闭合子图.即你想杀x,你就一定要杀掉保护x的点,那么把x向保护它的点连边.那么题目就转化成了最大权闭合子图的问题. 但是这个图有点特殊啊... 考虑有环的情况,显然这个环以 ...

  9. bzoj 4873: [Shoi2017]寿司餐厅【最大权闭合子图】

    有正负收益,考虑最小割 因为有依赖关系,所以考虑最大权闭合子图 首先对每个d[i][j]建个点,正权连(s,id[i][j],d[i][j])并加到ans上,负权连(id[i][j],t,-d[i][ ...

随机推荐

  1. SQL Server调优系列进阶篇(查询优化器的运行方式)

    前言 前面我们的几篇文章介绍了一系列关于运算符的基础介绍,以及各个运算符的优化方式和技巧.其中涵盖:查看执行计划的方式.几种数据集常用的连接方式.联合运算符方式.并行运算符等一系列的我们常见的运算符. ...

  2. gulp系列:自动构建及刷新浏览器

    2016年3月3日 14:50:15     晴 .清空目录 常用插件 gulp-clean .del (nodejs模块)del = require('del')#2.文件复制 原生模块gulp,插 ...

  3. 浴室随想——RogueLike随想

    好玩的RogueLike 0 不同的追求 1 从追求中寻找商机 2 更的直接方法 3 我的追求 4 我的方法 5 好玩的RogueLike RogueLike游戏很好玩,因为你永远不知道接下来会发生什 ...

  4. 烂泥:使用nginx利用虚拟主机搭建WordPress博客

    本文由秀依林枫提供友情赞助,首发于烂泥行天下. 最近开始打算学习nginx web服务器,既然是学习还是以实用为目的的.我们在此以搭建WordPress博客为例. 搭建WordPress博客,我们需要 ...

  5. JAVA-android 更改APP名称与图标

    首先要在你的资源文件放入你想换的图标图片拖到drawable-XX文件夹下,然后你打开AndroidManifest.xml这个配置清单文件找到application标签里的这句android:ico ...

  6. 谈谈Lucene和Solr索引存目录

    在Lucene中,有几种索引存放模式呢?用过的人可能记得SimpleFSDirectory.MMapDirectory.NIOFSDirectory.RAMDirectory这四种.新版本的通过FSD ...

  7. 2016中国大学生程序设计竞赛(长春) Ugly Problem 模拟+大数减法

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=5920 我们的思路是: 对于一个串s,先根据s串前一半复制到后一半构成一个回文串, 如果这个回文串比s小, ...

  8. android代码优化----ListView中自定义adapter的封装(ListView的模板写法)

    [声明] 欢迎转载,但请保留文章原始出处→_→ 生命壹号:http://www.cnblogs.com/smyhvae/ 文章来源:http://www.cnblogs.com/smyhvae/p/4 ...

  9. Maya 与 Matlab 数据互联插件使用教程

    实验室做网格处理方面的算法,写界面很麻烦,所以有了利用maya和matlab进行数据连通的念头,于是有了这个插件. 这个插件可以把maya的网格数据导入matlab之中,完成计算之后重新返回maya. ...

  10. git删除远程仓库的文件或目录

    git rm -r --cached a/2.txt //删除a目录下的2.txt文件   删除a目录git rm -r --cached a git commit -m "删除a目录下的2 ...