机器学习实战------利用logistics回归预测病马死亡率
大家好久不见,实战部分一直托更,很不好意思。本文实验数据与代码来自机器学习实战这本书,倾删。
一:前期代码准备
1.1数据预处理

还是一样,设置两个数组,前两个作为特征值,后一个作为标签。当然这是简单的处理,实际开发中特征值都是让我们自己选的,所以有时候对业务逻辑的理解还是很重要的。
1.2 sigmoid函数设置


1.3固定步长梯度上升算法
这段代码见一面1.4节。
Alpha表示步长,maxcycles表示最大的迭代次数,其中weights=ones((n,1))是初始化一个全部为一的n*1的矩阵。Error就是分类错误的项。大家对于公式:
weights=weights+alpha*dataMatrix.transpose()*error 表示权值是前一个权值+步长*方向(预测值与实际值的差值决定了方向)。
1.4分析数据画出决策边界

这里没什么好说的,就是把两个特征值分别作为横坐标和纵坐标,然后用一条直线分割开来。
1.4.1梯度上升算法效果图

可以看出分错了四个点,但是这个方法计算量太大了。大家来跟着我改进它!

1.4.2随机梯度上升。
实现代码如下:

梯度上升算法在每次更新回归系数的时候都需要遍历整个数据集,这样处理数十亿样本或者成千上万的特征,那还不爆炸么,计算复杂度太高了。一种改进方法是一次仅用一个样本点来更新回归系数,该方法称为梯度上升算法。要根据给出的数据边学习边给结果,所以随机梯度上升算法是一个在线学习算法。
效果图:

等等,小花你在逗我吧。你这个越改越差。刚开始,我们的分类器那么完美,你现在分类的结果是个什么东东啊。哈哈,其实这个游戏本身就是不公平的,梯度上升算法,在整个数据集上迭代了500次才得到的,而第二种才计算了几次。而且判断一个算法优劣的可靠方法是看它是否收敛,也就是随着计算次数的增加参数是否趋于稳定。大家莫急,先等我略施小计。
1.4.2改进的随机梯度上升算法
代码如下:

(1) 让步长变化,加上一个参数表示步长永远不会等于0,保持每次加的数据都会对结果又影响。
(2) 有一个随机的过程从数据集中选取数据来更新参数,选到之后就不选了。
(3) 参数设定,这里设定的是150次迭代,等下我设置500次让大家看看实验结果。
150次迭代如下:

500次迭代如下:

感觉好像没什么变化啊。这就是随机上升梯度算法的奥妙啊。迭代150次和500次一样,这样对时间复杂度的减少意义重大啊,有木有。
二:预测病马死亡率
2.1准备数据:处理数据的缺失值
方法:
1. 删除
最简单的方法是删除,删除属性或者删除样本。如果大部分样本该属性都缺失,这个属性能提供的信息有限,可以选择放弃使用该维属性;如果一个样本大部分属性缺失,可以选择放弃该样本。虽然这种方法简单,但只适用于数据集中缺失较少的情况。
2. 统计填充
对于缺失值的属性,尤其是数值类型的属性,根据所有样本关于这维属性的统计值对其进行填充,如使用平均数、中位数、众数、最大值、最小值等,具体选择哪种统计值需要具体问题具体分析。另外,如果有可用类别信息,还可以进行类内统计,比如身高,男性和女性的统计填充应该是不同的。
3. 统一填充
对于含缺失值的属性,把所有缺失值统一填充为自定义值,如何选择自定义值也需要具体问题具体分析。当然,如果有可用类别信息,也可以为不同类别分别进行统一填充。常用的统一填充值有:“空”、“0”、“正无穷”、“负无穷”等。
4. 预测填充
我们可以通过预测模型利用不存在缺失值的属性来预测缺失值,也就是先用预测模型把数据填充后再做进一步的工作,如统计、学习等。虽然这种方法比较复杂,但是最后得到的结果比较好。
2.2 测试算法
代码:

实验结果:

总结:为什么输出的结果不一样呢,因为里面有一个随机的值啊。
毕竟自己也是在学习,如有错误,请大家不吝赐教。
机器学习实战------利用logistics回归预测病马死亡率的更多相关文章
- Logistic回归实战篇之预测病马死亡率
利用sklearn.linear_model.LogisticRegression训练和测试算法. 示例代码: import numpy as np import matplotlib.pyplot ...
- [机器学习实战-Logistic回归]使用Logistic回归预测各种实例
目录 本实验代码已经传到gitee上,请点击查收! 一.实验目的 二.实验内容与设计思想 实验内容 设计思想 三.实验使用环境 四.实验步骤和调试过程 4.1 基于Logistic回归和Sigmoid ...
- 机器学习实战 - 读书笔记(14) - 利用SVD简化数据
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第14章 - 利用SVD简化数据. 这里介绍,机器学习中的降维技术,可简化样品数据. 基 ...
- 机器学习实战 - 读书笔记(13) - 利用PCA来简化数据
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第13章 - 利用PCA来简化数据. 这里介绍,机器学习中的降维技术,可简化样品数据. ...
- 机器学习实战 - 读书笔记(07) - 利用AdaBoost元算法提高分类性能
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习笔记,这次是第7章 - 利用AdaBoost元算法提高分类性能. 核心思想 在使用某个特定的算法是, ...
- 机器学习实战(Machine Learning in Action)学习笔记————09.利用PCA简化数据
机器学习实战(Machine Learning in Action)学习笔记————09.利用PCA简化数据 关键字:PCA.主成分分析.降维作者:米仓山下时间:2018-11-15机器学习实战(Ma ...
- 《机器学习实战》学习笔记第十四章 —— 利用SVD简化数据
相关博客: 吴恩达机器学习笔记(八) —— 降维与主成分分析法(PCA) <机器学习实战>学习笔记第十三章 —— 利用PCA来简化数据 奇异值分解(SVD)原理与在降维中的应用 机器学习( ...
- 【转载】 机器学习实战 - 读书笔记(07) - 利用AdaBoost元算法提高分类性能
原文地址: https://www.cnblogs.com/steven-yang/p/5686473.html ------------------------------------------- ...
- 《机器学习实战》学习笔记第十三章 —— 利用PCA来简化数据
相关博文: 吴恩达机器学习笔记(八) —— 降维与主成分分析法(PCA) 主成分分析(PCA)的推导与解释 主要内容: 一.向量內积的几何意义 二.基的变换 三.协方差矩阵 四.PCA求解 一.向量內 ...
随机推荐
- NPOI导出
<body> @using (Html.BeginForm("ImportCommentsFile", "CommentsManage", Form ...
- Android开发之ViewPager做新手引导界面
先看一下我们要开发的界面(三张图片,滑到最后一个会出现开始体验的Button,下面的小红点会跟着一起滑动): 首先看一下布局文件: <?xml version="1.0" e ...
- 工作框架各种使用整理 -- 展示数据列表并做update
<!--ProductCategory.xml--> <?xml version="1.0" encoding="UTF-8"?> &l ...
- iOS-- 快速集成iOS基于RTMP的视频推流
效果图 iTools有点卡, 但是推到服务器倒是很快的. 推流 前言 这篇blog是iOS视频直播初窥:<喵播APP>的一个补充. 因为之前传到github上的项目中没有集成视频的推流.有 ...
- linux 安装samba
1. yum -y install samba 2. 配置 vi /etc/samba/smb.conf [global] 下面的 修改 workgroup = MYGROUPsecurity = s ...
- Mvc多级Views目录 asp.net mvc4 路由重写及 修改view 的寻找视图的规则
一般我们在mvc开发过程中,都会碰到这样的问题.页面总是写在Views文件夹下,而且还只能一个Controller的页面只能写在相应的以Controller名命名的文件夹下.如果我们写到别处呢?那么肯 ...
- iOS开发小技巧--获取自定义的BarButtonItem中的自定义View的方法(customView)
如果BarButtonItem是通过[[UIBarButtonItem alloc] initWithCustomView:(nonnull UIView *)]方法设置的.某些情况下需要修改BarB ...
- ActiveMQ_监听器(四)
一.本文章包含的内容 1.列举了ActiveMQ中监听器的使用 2.spring+activemq方式 1 2 3 <!-- 消息监听容器(Queue),配置连接工厂,监听的队列是queue3, ...
- 【BZOJ 4515】【SDOI 2016 Round1 Day1 T3】游戏
考场上写了lct,可惜当时对标记永久化的理解并不是十分深刻,导致调一个错误的程序调了4h+,最后这道题爆0了QwQ 现在写了树链剖分,用标记永久化的线段树维护轻重链,对于$s\rightarrow l ...
- html-div中内容自动换行
<div style='width: 100px;display:block;word-break: break-all;word-wrap: break-word;'> 内容超出div宽 ...