训练时, solver.prototxt中使用的是train_val.prototxt

./build/tools/caffe/train -solver ./models/bvlc_reference_caffenet/solver.prototxt

使用上面训练的网络提取特征,使用的网络模型是deploy.prototxt

./build/tools/extract_features.bin models/bvlc_refrence_caffenet.caffemodel models/bvlc_refrence_caffenet/deploy.prototxt

Caffe finetune

1、准备finetune的数据

image文件夹子里面放好来finetune的图片

train.txt中放上finetune的训练图片绝对路径,及其对应的类别

test.txt中放上finetune的测试图片绝对路径,及其对应的类别

2、更改train_val.prototxt

更改最后一层

a)输出个数改变

b)最后一层学习率变大,由2变成20

3、更改solver.prototxt

a)stepsize变小:由100000变成20000

b)max_iter变小:450000变成50000

c)base_lr变小:0.01变成0.001

d)test_iter变小:1000变成100

4、调用命令finetune

caffe % ./build/tools/caffe train -solver models/finetune_flickr_style/solver.prototxt -weights models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel -gpu 0

 注意:学习率有两个是一个是weight,一个是bias的学习率,一般bias的学习率是weight的两倍

    decay是权值衰减,是加了正则项目,防止overfitting

the global weight_decay multiplies the parameter-specific decay_mult

solver.prototxt具体设置解释:

rmsprop:
net: "examples/mnist/lenet_train_test.prototxt"
test_iter: 100
test_interval: 500
#The base learning rate, momentum and the weight decay of the network.
base_lr: 0.01
momentum: 0.0
weight_decay: 0.0005
#The learning rate policy
lr_policy: "inv"
gamma: 0.0001
power: 0.75
display: 100
max_iter: 10000
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet_rmsprop"
solver_mode: GPU
type: "RMSProp"
rms_decay: 0.98 Adam:
net: "examples/mnist/lenet_train_test.prototxt"
test_iter: 100
test_interval: 500
#All parameters are from the cited paper above
base_lr: 0.001
momentum: 0.9
momentum2: 0.999
#since Adam dynamically changes the learning rate, we set the base learning
#rate to a fixed value
lr_policy: "fixed"
display: 100
#The maximum number of iterations
max_iter: 10000
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet"
type: "Adam"
solver_mode: GPU multistep:
net: "examples/mnist/lenet_train_test.prototxt"
test_iter: 100
test_interval: 500
#The base learning rate, momentum and the weight decay of the network.
base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
#The learning rate policy
lr_policy: "multistep"
gamma: 0.9
stepvalue: 5000
stepvalue: 7000
stepvalue: 8000
stepvalue: 9000
stepvalue: 9500
# Display every 100 iterations
display: 100
#The maximum number of iterations
max_iter: 10000
#snapshot intermediate results
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet_multistep"
#solver mode: CPU or GPU
solver_mode: GPU

  

卷积层的group参数,可以实现channel-wise的卷积操作

caffe使用的更多相关文章

  1. 基于window7+caffe实现图像艺术风格转换style-transfer

    这个是在去年微博里面非常流行的,在git_hub上的代码是https://github.com/fzliu/style-transfer 比如这是梵高的画 这是你自己的照片 然后你想生成这样 怎么实现 ...

  2. caffe的python接口学习(7):绘制loss和accuracy曲线

    使用python接口来运行caffe程序,主要的原因是python非常容易可视化.所以不推荐大家在命令行下面运行python程序.如果非要在命令行下面运行,还不如直接用 c++算了. 推荐使用jupy ...

  3. 基于Caffe的Large Margin Softmax Loss的实现(中)

    小喵的唠叨话:前一篇博客,我们做完了L-Softmax的准备工作.而这一章,我们开始进行前馈的研究. 小喵博客: http://miaoerduo.com 博客原文:  http://www.miao ...

  4. 基于Caffe的Large Margin Softmax Loss的实现(上)

    小喵的唠叨话:在写完上一次的博客之后,已经过去了2个月的时间,小喵在此期间,做了大量的实验工作,最终在使用的DeepID2的方法之后,取得了很不错的结果.这次呢,主要讲述一个比较新的论文中的方法,L- ...

  5. 基于Caffe的DeepID2实现(下)

    小喵的唠叨话:这次的博客,真心累伤了小喵的心.但考虑到知识需要巩固和分享,小喵决定这次把剩下的内容都写完. 小喵的博客:http://www.miaoerduo.com 博客原文: http://ww ...

  6. 基于Caffe的DeepID2实现(中)

    小喵的唠叨话:我们在上一篇博客里面,介绍了Caffe的Data层的编写.有了Data层,下一步则是如何去使用生成好的训练数据.也就是这一篇的内容. 小喵的博客:http://www.miaoerduo ...

  7. 基于Caffe的DeepID2实现(上)

    小喵的唠叨话:小喵最近在做人脸识别的工作,打算将汤晓鸥前辈的DeepID,DeepID2等算法进行实验和复现.DeepID的方法最简单,而DeepID2的实现却略微复杂,并且互联网上也没有比较好的资源 ...

  8. 基于英特尔® 至强™ 处理器 E5 产品家族的多节点分布式内存系统上的 Caffe* 培训

    原文链接 深度神经网络 (DNN) 培训属于计算密集型项目,需要在现代计算平台上花费数日或数周的时间方可完成. 在最近的一篇文章<基于英特尔® 至强™ E5 产品家族的单节点 Caffe 评分和 ...

  9. 基于英特尔® 至强 E5 系列处理器的单节点 Caffe 评分和训练

    原文链接 在互联网搜索引擎和医疗成像等诸多领域,深度神经网络 (DNN) 应用的重要性正在不断提升. Pradeep Dubey 在其博文中概述了英特尔® 架构机器学习愿景. 英特尔正在实现 Prad ...

  10. Caffe Python MemoryDataLayer Segmentation Fault

    转载请注明出处,楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/ 因为利用Pyhon来做数据的预处理比较方便,因此在data_l ...

随机推荐

  1. 在Flex4中嵌入字体

    如果要使用的字体不是系统字体,可以把字体嵌入到Flash中,然后引用该字体.不过字体文件一般都比较大,慎重使用该功能. 官方例子 http://help.adobe.com/en_US/flex/us ...

  2. 网页缩放对 FLASH的影响

    目前新出的,和升级的浏览器,都加了页面放大功能, 这些功能是对FLASH有影响的,表现在 flash在获取stage.stageWidth时,数值会按相应比例有变化 本人在用flex4.6开发时,自定 ...

  3. 嵌入式Linux驱动学习之路(六)u-boot启动内核

    内核启动是需要必要的启动参数.不能开机自动完全从0开始启动,需要uboot帮助内核实现重定位并提供参数. 首先,uboo会从Kernel分区中读取bootcmd环境变量,根据环境变量可自动启动. 分区 ...

  4. java 25 - 1 网络编程的概述

    网络编程概述 计算机网络 是指将地理位置不同的具有独立功能的多台计算机及其外部设备,通过通信线路连接起来,在网络操作系统,网络管理软件及网络通信协议的管理和协调下,实现资源共享和信息传递的计算机系统. ...

  5. luogu1003铺地毯[noip2011 提高组 Day1 T1]

    题目描述 为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯.一共有 n 张地毯,编号从 1 到n .现在将这些地毯按照编号从小到大的顺序平行于 ...

  6. Oracle过程及函数的参数模式,In、out、in out模式

    Oracle过程及函数的参数模式 In.out.in out模式 在Oracle中过程与函数都可以有参数,参数的类型可以指定为in.out.in out三种模式. 三种参数的具体说明,如下图所示: ( ...

  7. 关于webpack.optimize.CommonsChunkPlugin的使用二

    Note:当有多个入口节点的时候,只有所有入口节点都引入了同一个模块的时候,webpack.optimize.CommonsChunkPlugin才会将那个模块提取出来,如果其中一个入口节点没有引入该 ...

  8. 完整部署CentOS7.2+OpenStack+kvm 云平台环境(6)--在线调整虚拟机的大小

    前面提到过openstack环境部署及创建虚拟机的完整过程,然后有时候会发现创建的虚拟机规格太小,满足不了业务需求:亦或是虚拟机规格太大,容易造成资源浪费.于是就有了在线拉伸虚拟机规格的需求.所以,今 ...

  9. expect结合ssh遍历线上机器

    有个需求,有个文件删除了,但是不确定线上机器还都存不存在 #!/home/work/.jumbo/bin/expect -f set timeout - set mac [lindex $argv ] ...

  10. Spring Security笔记:HTTP Basic 认证

    在第一节 Spring Security笔记:Hello World 的基础上,只要把Spring-Security.xml里改一个位置 <http auto-config="true ...