【bzoj3991】 寻宝游戏
http://www.lydsy.com/JudgeOnline/problem.php?id=3991 (题目链接)
题意
给出一个n个节点的带权树,m次操作每次修改一个关键点,求每次操作后,从其中任意一个关键点出发走遍所有关键点再走回起点所需的最小花费。
solution
假如没有修改操作的话,就像一个简单的在虚树上树形DP,方程如下:$${f[i]=\sum{f[son]}+\sum{e.w*2}}$$
观察一下DP的过程,就是不断地从前面的点走到后面的点,所以我们可以不用这么麻烦,直接按关键点的dfs序排序走一遍就可以了。我们不构造虚树,而是用set维护修改操作,修改的时候只是加入或删除其中的一个点,所以找到这个点的前驱和后继也就是lower_bound-1和upper_bound,计算一下对答案的影响就好了,最后注意要回起点和开LL。
代码
// bzoj3991
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<set>
#define MOD 1000000007
#define inf 2147483647
#define LL long long
#define free(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout);
using namespace std;
inline LL getint() {
LL x=0,f=1;char ch=getchar();
while (ch>'9' || ch<'0') {if (ch=='-') f=-1;ch=getchar();}
while (ch>='0' && ch<='9') {x=x*10+ch-'0';ch=getchar();}
return x*f;
} const int maxn=100010;
struct edge {int next,to,w;}e[maxn<<2];
int head[maxn],fa[maxn][20],bin[20],deep[maxn],b[maxn],num[maxn],dfn[maxn],a[maxn];
int cnt,n,m;
LL w[maxn];
set<int> s; void insert(int u,int v,int w) {
e[++cnt].to=v;e[cnt].next=head[u];head[u]=cnt;e[cnt].w=w;
e[++cnt].to=u;e[cnt].next=head[v];head[v]=cnt;e[cnt].w=w;
}
void dfs(int u) {
dfn[u]=++cnt;num[cnt]=u;
for (int i=1;i<20;i++) fa[u][i]=fa[fa[u][i-1]][i-1];
for (int i=head[u];i;i=e[i].next) if (e[i].to!=fa[u][0]) {
w[e[i].to]=w[u]+(LL)e[i].w;
deep[e[i].to]=deep[u]+1;
fa[e[i].to][0]=u;
dfs(e[i].to);
}
}
int lca(int x,int y) {
if (deep[x]<deep[y]) swap(x,y);
int t=deep[x]-deep[y];
for (int i=0;bin[i]<=t;i++) if (bin[i]&t) x=fa[x][i];
for (int i=19;i>=0;i--) if (fa[x][i]!=fa[y][i]) x=fa[x][i],y=fa[y][i];
return x==y?x:fa[x][0];
}
LL dis(int x,int y) {
return w[x]+w[y]-2*w[lca(x,y)];
}
int main() {
bin[0]=1;for (int i=1;i<20;i++) bin[i]=bin[i-1]<<1;
scanf("%d%d",&n,&m);
for (int i=1;i<n;i++) {
int u=getint(),v=getint(),w=getint();
insert(u,v,w);
}
cnt=0;
dfs(1);
LL ans=0;
s.insert(inf);s.insert(-inf);
while (m--) {
LL x=getint(),t;
if (b[x]) s.erase(dfn[x]),t=-1;
else s.insert(dfn[x]),t=1;
b[x]^=1;
int l=*--s.lower_bound(dfn[x]),r=*s.upper_bound(dfn[x]);
if (l!=-inf) ans+=(LL)t*dis(num[l],x);
if (r!=inf) ans+=(LL)t*dis(num[r],x);
if (l!=-inf && r!=inf) ans-=(LL)t*dis(num[l],num[r]);
if (s.size()>3) t=dis(num[*s.upper_bound(-inf)],num[*--s.lower_bound(inf)]);
else t=0;
printf("%lld\n",ans+t);
}
return 0;
}
【bzoj3991】 寻宝游戏的更多相关文章
- BZOJ3991 寻宝游戏 LCA 虚树 SET
5.26 T1:寻宝游戏 Description 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄, ...
- [Bzoj3991]寻宝游戏(dfs序+set)
Description 题目链接 Solution 用set按dfs序维护当前的宝物序列,那么答案为相邻2个点的距离加上头尾2个的距离 Code #include <cstdio> #in ...
- [BZOJ3991][SDOI2015]寻宝游戏
[BZOJ3991][SDOI2015]寻宝游戏 试题描述 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择 ...
- 【BZOJ3991】寻宝游戏(动态规划)
[BZOJ3991]寻宝游戏(动态规划) 题面 BZOJ 题解 很明显,从任意一个有宝藏的点开始,每次走到相邻的\(dfs\)的节点就行了. 证明? 类似把一棵树上的关键点全部标记出来 显然是要走一个 ...
- 【BZOJ3991】[SDOI2015]寻宝游戏 树链的并+set
[BZOJ3991][SDOI2015]寻宝游戏 Description 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩 ...
- [bzoj3991][SDOI2015]寻宝游戏_树链的并_倍增lca_平衡树set
寻宝游戏 bzoj-3991 SDOI-2015 题目大意:题目链接. 注释:略. 想法:我们发现如果给定了一些点有宝物的话那么答案就是树链的并. 树链的并的求法就是把所有点按照$dfs$序排序然后相 ...
- 【BZOJ3991】【SDOI2015】寻宝游戏
Description 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然 ...
- CH#56C 异象石 和 BZOJ3991 [SDOI2015]寻宝游戏
异象石 CH Round #56 - 国庆节欢乐赛 描述 Adera是Microsoft应用商店中的一款解谜游戏. 异象石是进入Adera中异时空的引导物,在Adera的异时空中有一张地图.这张地图上 ...
- BZOJ3991:寻宝游戏 (LCA+dfs序+树链求并+set)
小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可以任意在地图的道路上行走 ...
- BZOJ3991 [SDOI2015]寻宝游戏 【dfs序 + lca + STL】
题目 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可以任意在地图的道路 ...
随机推荐
- 产品经理技能之MRD的笔记之一
原文:http://www.woshipm.com/pmd/131946.html/comment-page-1 产品经理技能之MRD 一.MRD与BRD的不同之处 BRD:这么做有什么好处,并说明好 ...
- ListView实现原理
转载:http://blog.csdn.net/guolin_blog/article/details/44996879 在Android所有常用的原生控件当中,用法最复杂的应该就是ListView了 ...
- [LINK]Scribe
http://www.361way.com/scribe-chukwa-kafka-flume/4119.html
- vbs外部调用
一.QTP调用外部VBS的方法 加到QTP的Resource中 在QTP菜单中设置, 菜单FileàSettingsàResource,将要加载的VB脚本添加进来. 举例: 步骤1:在D盘下新建一个V ...
- FineUI小技巧(3)表格导出与文件下载
需求描述 实际应用中,我们可能需要导出表格内容,或者在页面回发时根据用户权限下载文件(注意,这里的导出与下载,都是在后台进行的,和普通的一个链接下载文件不同). 点击按钮导出表格 由于FineUI 默 ...
- sql server利用开窗函数over() 进行分组统计
这是一道常见的面试题,在实际项目中经常会用到. 需求:求出以产品类别为分组,各个分组里价格最高的产品信息. 实现过程如下: declare @t table( ProductID int, Produ ...
- Vue学习笔记-2
前言 本文非vue教程,仅为学习vue过程中的个人理解与笔记,有说的不正确的地方欢迎指正讨论 1.computed计算属性函数中不能使用vm变量 在计算属性的函数中,不能使用Vue构造函数返回的vm变 ...
- 深入理解计算机系统(4.1)---X86的孪生兄弟,Y86指令体系结构
引言 各位猿友们好,计算机系统系列很久没更新了,实在是抱歉之极.新的一年,为了给计算机系统系列添加一些新的元素,LZ将其更改为书的原名<深入理解计算机系统>.这本书非常厚,而且难度较高,L ...
- 【摘录】某表含有N个字段超精简模糊查询方法
SELECT * FROM table where CONCAT(a,b,c......) like '%key%' select name from syscolumns where id=obj ...
- 最棒的10款MySQL GUI工具
绝大多数的关系数据库都明显不同于MS Access,它们都有两个截然不同的部分:后端作为数据仓库,前端作为用于数据组件通信的用户界面.这种设计非常巧妙,它并行处理两层编程模型,将数据 层从用户界面中分 ...