hadoop中map和reduce的数量设置问题
转载http://my.oschina.net/Chanthon/blog/150500
map和reduce是hadoop的核心功能,hadoop正是通过多个map和reduce的并行运行来实现任务的分布式并行计算,从这个观点来看,如果将map和reduce的数量设置为1,那么用户的任务就没有并行执行,但是map和reduce的数量也不能过多,数量过多虽然可以提高任务并行度,但是太多的map和reduce也会导致整个hadoop框架因为过度的系统资源开销而使任务失败。所以用户在提交map/reduce作业时应该在一个合理的范围内,这样既可以增强系统负载匀衡,也可以降低任务失败的开销。
1 map的数量
map的数量通常是由hadoop集群的DFS块大小确定的,也就是输入文件的总块数,正常的map数量的并行规模大致是每一个Node是10~100个,对于CPU消耗较小的作业可以设置Map数量为300个左右,但是由于hadoop的没一个任务在初始化时需要一定的时间,因此比较合理的情况是每个map执行的时间至少超过1分钟。具体的数据分片是这样的,InputFormat在默认情况下会根据hadoop集群的DFS块大小进行分片,每一个分片会由一个map任务来进行处理,当然用户还是可以通过参数mapred.min.split.size参数在作业提交客户端进行自定义设置。还有一个重要参数就是mapred.map.tasks,这个参数设置的map数量仅仅是一个提示,只有当InputFormat 决定了map任务的个数比mapred.map.tasks值小时才起作用。同样,Map任务的个数也能通过使用JobConf 的conf.setNumMapTasks(int num)方法来手动地设置。这个方法能够用来增加map任务的个数,但是不能设定任务的个数小于Hadoop系统通过分割输入数据得到的值。当然为了提高集群的并发效率,可以设置一个默认的map数量,当用户的map数量较小或者比本身自动分割的值还小时可以使用一个相对交大的默认值,从而提高整体hadoop集群的效率。
2 reduece的数量
reduce在运行时往往需要从相关map端复制数据到reduce节点来处理,因此相比于map任务。reduce节点资源是相对比较缺少的,同时相对运行较慢,正确的reduce任务的个数应该是0.95或者1.75 *(节点数 ×mapred.tasktracker.tasks.maximum参数值)。如果任务数是节点个数的0.95倍,那么所有的reduce任务能够在 map任务的输出传输结束后同时开始运行。如果任务数是节点个数的1.75倍,那么高速的节点会在完成他们第一批reduce任务计算之后开始计算第二批 reduce任务,这样的情况更有利于负载均衡。同时需要注意增加reduce的数量虽然会增加系统的资源开销,但是可以改善负载匀衡,降低任务失败带来的负面影响。同样,Reduce任务也能够与 map任务一样,通过设定JobConf 的conf.setNumReduceTasks(int num)方法来增加任务个数。
3 reduce数量为0
有些作业不需要进行归约进行处理,那么就可以设置reduce的数量为0来进行处理,这种情况下用户的作业运行速度相对较高,map的输出会直接写入到 SetOutputPath(path)设置的输出目录,而不是作为中间结果写到本地。同时Hadoop框架在写入文件系统前并不对之进行排序。
map red.tasktracker.map.tasks.maximum 这个是一个task tracker中可同时执行的map的最大个数,默认值为2,看《pro hadoop》:it is common to set this value to the effective number of CPUs on the node
把ob分割成map和reduce,合理地选择Job中 Tasks数的大小能显著的改善Hadoop执行的性能。增加task的个数会增加系统框架的开销,但同时也会增强负载均衡并降低任务失败的开销。一个极端是1个map、1个reduce的情况,这样没有任务并行。另一个极端是1,000,000个map、1,000,000个reduce的情况,会由于框架的开销过大而使得系统资源耗尽。
Map任务的数量
Map的数量经常是由输入数据中的DFS块的数量来决定的。这还经常会导致用户通过调整DFS块大小来调整map的数量。正确的map任务的并行度似乎应该是10-100 maps/节点,尽管我们对于处理cpu运算量小的任务曾经把这个数字调正到300maps每节点。Task的初始化会花费一些时间,因此最好控制每个 map任务的执行超过一分钟。
实际上控制map任务的个数是很 精妙的。mapred.map.tasks参数对于InputFormat设定map执行的个数来说仅仅是一个提示。InputFormat的行为应该把输入数据总的字节值分割成合适数量的片段。但是默认的情况是DFS的块大小会成为对输入数据分割片段大小的上界。一个分割大小的下界可以通过一个mapred.min.split.size参数来设置。因此,如果你有一个大小是10TB的输入数据,并设置DFS块大小为 128M,你必须设置至少82K个map任务,除非你设置的mapred.map.tasks参数比这个数还要大。最终InputFormat 决定了map任务的个数。
Map任务的个数也能通过使用JobConf 的 conf.setNumMapTasks(int num)方法来手动地设置。这个方法能够用来增加map任务的个数,但是不能设定任务的个数小于Hadoop系统通过分割输入数据得到的值。
Reduce任务的个数
正确的reduce任务的 个数应该是0.95或者1.75 ×(节点数 ×mapred.tasktracker.tasks.maximum参数值)。如果任务数是节点个数的0.95倍,那么所有的reduce任务能够在 map任务的输出传输结束后同时开始运行。如果任务数是节点个数的1.75倍,那么高速的节点会在完成他们第一批reduce任务计算之后开始计算第二批 reduce任务,这样的情况更有利于负载均衡。
目前reduce任务的数量 由于输出文件缓冲区大小(io.buffer.size × 2 ×reduce任务个数 << 堆大小),被限制在大约1000个左右。直到能够指定一个固定的上限后,这个问题最终会被解决。
Reduce任务的数量同时也控制着输出目录下输出文件的数量,但是通常情况下这并不重要,因为下一阶段的 map/reduce任务会把他们分割成更加小的片段。
Reduce任务也能够与 map任务一样,通过设定JobConf 的conf.setNumReduceTasks(int num)方法来增加任务个数。
hadoop中map和reduce的数量设置问题的更多相关文章
- hadoop中map和reduce的数量设置
hadoop中map和reduce的数量设置,有以下几种方式来设置 一.mapred-default.xml 这个文件包含主要的你的站点定制的Hadoop.尽管文件名以mapred开头,通过它可以控制 ...
- 如何确定Hadoop中map和reduce的个数--map和reduce数量之间的关系是什么?
一般情况下,在输入源是文件的时候,一个task的map数量由splitSize来决定的,那么splitSize是由以下几个来决定的 goalSize = totalSize / mapred.map. ...
- 【转】Python 中map、reduce、filter函数
转自:http://www.blogjava.net/vagasnail/articles/301140.html?opt=admin 介绍下Python 中 map,reduce,和filter 内 ...
- Python函数式编程中map()、reduce()和filter()函数的用法
Python中map().reduce()和filter()三个函数均是应用于序列的内置函数,分别对序列进行遍历.递归计算以及过滤操作.这三个内置函数在实际使用过程中常常和“行内函数”lambda函数 ...
- Hadoop中map数的计算
转载▼ Hadoop中在计算一个JOB需要的map数之前首先要计算分片的大小.计算分片大小的公式是: goalSize = totalSize / mapred.map.tasks minSize = ...
- Hadoop 系统配置 map 100% reduce 0%
之前在本地配置了hadoop伪分布模式,hdfs用起来没问题,mapreduce的单机模式也没问题. 今天写了个程序,想在伪分布式上跑一下mapreduce,结果出现 map 100% reduce ...
- Java操作Hadoop、Map、Reduce合成
原始数据: Map阶段 1.每次读一行数据, 2.拆分每行数据, 3.每个单词碰到一次写个1 <0, "hello tom"> <10, "hello ...
- pyhton中map和reduce
from functools import reduce import numpy as np ''' reduce[function, sequence[, initial]]使用 1.functi ...
- 廖雪峰教程笔记:js中map和reduce的用法
举例说明,比如我们有一个函数f(x)=x2,要把这个函数作用在一个数组[1, 2, 3, 4, 5, 6, 7, 8, 9]上,就可以用map实现如下: 由于map()方法定义在JavaScript的 ...
随机推荐
- php empty()和isset()
2015年12月11日 10:59:08 echo phpversion(); //5.6.13 $a = array( 'aaa' => 1, 'bbb' => 0, 'ccc' =&g ...
- MySQL\MariaDB 多线程复制初探
背景: MariaDB 在10.0.5就已经支持了并行复制的功能,即从库多线程复制的功能.MySQL最先在5.6.3中支持.目前暂时没有用MySQL5.6的版本,故暂时只对MariaDB进行一些说明, ...
- Effective C++ -----条款33:避免遮掩继承而来的名称
derived classes内的名称会遮掩base classes内的名称.在public继承下从来没有人希望如此. 为了让被遮掩的名称再见天日,可使用using声明式或转交函数(forwardin ...
- STL_fill()用法
以前很多次会给某个区间赋值,今天才知道有个函数可以满足这个功能. void fill (ForwardIterator first, ForwardIterator last, const T& ...
- 【processing】小代码3
鼠标响应: mouseX, mouseY 鼠标的坐标 ---------------------------------------------- void setup() { size(,); sm ...
- IOS - UIViewController的生命周期
1)Load周期 2)Unload周期 在UIViewController中,view(黑体的view指的是controller的view属性)有两个循环:加载和卸载循环.当程序的一部分向contro ...
- Android笔记:四大组件
1.Activity(是用户可以看到的主要的界面,使用时需要在AndroidManifest.xml中编辑声明.) 启动模式: 启动模式一共有四种,分别是standard.singleTop.sing ...
- xmpp SASL 定义
SASL 定义 <摘抄自:xmpp_3920> [SASL]的 profiling 需求要求协议定义 供以下信息: 服务名:“xmpp” 初始序列:初始实体 供一个开放 XML 流头后,并 ...
- OpenGIS 介绍
转自:http://www.blogjava.net/sinoly/archive/2007/09/25/148002.html 值此FOSS4G大会即将召开之日,最近我会在Blog上依次介绍一些Op ...
- 与你相遇好幸运,Tippecanoe在Centos下の安装
全新的CentOS 7 x86_64 安装编译工具 yum install -y gcc automake autoconf libtool make yum insyall -y gcc gcc-c ...