本题和poj1061青蛙问题同属一类,都运用到扩展欧几里德算法,可以参考poj1061,解题思路步骤基本都一样。
一,题意:
  对于for(i=A ; i!=B ;i+=C)循环语句,问在k位存储系统中循环几次才会结束。
    比如:当k=4时,存储的数 i 在0-15之间循环。(本题默认为无符号)
  若在有限次内结束,则输出循环次数。
  否则输出死循环。
二,思路:
本题利用扩展欧几里德算法求线性同余方程,设循环次数为 x ,则解方程 (A + C*x) % 2^k = B ;求出最小正整数 x。
  1,化简方程化为求线性同余方程标准式 ax ≡ b (mod n);
  2,扩展欧几里德算法求解线性同余方程 C*x ≡ B-A (mod 2^k);
  3,求出最小非负整数解。
三,步骤:
  1,化简:(A + C*x) mod 2^K = B  -->  C*x mod 2^k = B-A  -->   C*x ≡ B-A (mod 2^k);
  2,求线性同余方程 C*x ≡ B-A (mod 2^k) , 就相当于求二元一次方程 C*x + 2^k * y = B-A
    i,代入扩展欧几里德算法,求解方程 C*x + 2^k * y = gcd(C , 2^k) ;
    ii,利用方程 C*x + 2^k * y = gcd(C , 2^k)的解 x0 以及公式 x1 = x0 * c/d 求出原方程 a*x + b*y = c 的解 x1 ;前提是:d|c (c 能被 d 整除);
   3,利用周期性变化求最小的非负整数解 公式: x1 = (x1 % (b/d) + (b/d) ) % (b/d);

    若方程的C*x + 2^k * y = B-A 的一组整数解为(x1 , y1),则它的任意整数解为(x1 + k * (b/d) , y1 - k * (a/d) ) ( k取任意整数 ), T = b/d就为 x1 增长的周期

     i,若x1为负值,取最大的非正值:x1 = x1 % T ; 若x1为正值,以下两步无影响;
     ii,取正 :x1 = x1 + T ;
     iii, 防止 i 中的 x1=0 即 ii 中的 x1=T :x1 = x1 % T ;

代码如下:

 #include<iostream>
using namespace std; void exgcd(long long a,long long b,long long& d,long long& x,long long& y){//int& a 是定义一个存放整形变量a的地址
if(!b){ d=a ; x= ; y=; } // d用来存储gcd(a,b)的值
else { exgcd(b , a%b , d , y , x); y -= x* (a/b); }
} int main(){
long long A,B,C,d,x,y,T;
int k ;
while(cin>>A>>B>>C>>k){
if(A==&&B==&&C==&&k==)
break;
long long n = 1LL<<k; //n = 1 * 2^k ;注意此处,若为__int64,则应该是n = (__int64)1 << k;
exgcd(C,n,d,x,y);
if( (B-A) % d != ){
cout<<"FOREVER\n";
}
else {
x = x * (B-A) / d ;
T = n / d;
x = ( x%T + T ) % T ;
cout<<x<<endl;
}
}
return ;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

poj2115-C Looooops(扩展欧几里德算法)的更多相关文章

  1. POJ2115 C Looooops 扩展欧几里德

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ2115 题意 对于C的for(i=A ; i!=B ;i +=C)循环语句,问在k位存储系统中循环几次 ...

  2. POJ2115——C Looooops(扩展欧几里德+求解模线性方程)

    C Looooops DescriptionA Compiler Mystery: We are given a C-language style for loop of type for (vari ...

  3. poj2142-The Balance(扩展欧几里德算法)

    一,题意: 有两个类型的砝码,质量分别为a,b;现在要求称出质量为d的物品, 要用多少a砝码(x)和多少b砝码(y),使得(x+y)最小.(注意:砝码位置有左右之分). 二,思路: 1,砝码有左右位置 ...

  4. (扩展欧几里德算法)zzuoj 10402: C.机器人

    10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地 ...

  5. 欧几里德与扩展欧几里德算法 Extended Euclidean algorithm

    欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd( ...

  6. poj1061-青蛙的约会(扩展欧几里德算法)

    一,题意: 两个青蛙在赤道上跳跃,走环路.起始位置分别为x,y. 每次跳跃距离分别为m,n.赤道长度为L.两青蛙跳跃方向与次数相同的情况下, 问两青蛙是否有方法跳跃到同一点.输出最少跳跃次数.二,思路 ...

  7. HDU 1576 A/B 扩展欧几里德算法

    A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  8. ACM_扩展欧几里德算法

    <pre name="code" class="cpp">/* 扩展欧几里德算法 基本算法:对于不完全为 0 的非负整数 a,b,gcd(a,b)表 ...

  9. 扩展欧几里德算法(递归及非递归实现c++版)

    今天终于弄懂了扩展欧几里德算法,有了自己的理解,觉得很神奇,就想着写一篇博客. 在介绍扩展欧几里德算法之前,我们先来回顾一下欧几里德算法. 欧几里德算法(辗转相除法): 辗转相除法求最大公约数,高中就 ...

随机推荐

  1. spring mvc 注解访问控制器以及接收form数据的方式,包括直接接收日期类型及对象的方法

    Spring 中配置扫描器 <!-- springmvc的扫描器--> <context:component-scan base-package="com.beifeng. ...

  2. MapReduce 作业调试

    1. 最经典的方法通过打印语句来调试程序 System.err.println("Bad Data"+value.toString()); 这些输出错误都会记录到一个标准错误中,可 ...

  3. MVC Autofac 注入点

    关键句: ** DependencyResolver.SetResolver(new AutofacDependencyResolver(container));** protected overri ...

  4. web工程spring+ibatis单元测试

    web工程spring+ibatis在本地做单元测试,用例如下: package wanghongye; import org.junit.Before; import org.junit.Test; ...

  5. apache activemq的重连

    1.activemq的重连机制 maxReconnectAttempts -1 | 0 From version 5.6 onwards: -1 is default and means retry ...

  6. c#如何使用正则表达式ZZ

    什么是正则表达式      正则表达式是用来检验和操作字符串的强大工具.简单的理解正则表达式可以认为是一种特殊的验证字符串.正则表达式常见运用是验证用户输入信息格式,比如上面的那组"\w{1 ...

  7. Java的集合类

    转自:Q.Mr的博客 http://www.cnblogs.com/zrtqsk/p/3472258.html (本人第一次写博客,部分内容有参照李刚老师的疯狂java系列图书,如有遗漏错误,请多指教 ...

  8. XCODE UITextField 中的属性和用法

    XCODE  UITextField  中的属性和用法 一些基本的用法 UIButton *button = [UIButton buttonWithType:UIButtonTypeRoundedR ...

  9. jquery delay()介绍及使用指南

    .delay()是用来在jQuery动画效果和类似队列中是最好的.但是,由于其本身的限制,比如无法取消延时——.delay(),它不是JavaScript的原生 setTimeout函数的替代品,这可 ...

  10. 5分钟windows wamp php安装phpunit 2015最新安装实践

    16:11 2015/11/235分钟windows wamp php安装phpunit 2015最新安装实践我花了一个下午和一个上午的时间注意:步骤中添加环境变量多的时候要保存很多步,知道窗口都自动 ...