这一章可能是Andrew Ng讲得最不清楚的一章,为什么这么说呢?这一章主要讲后向传播(Backpropagration, BP)算法,Ng花了一大半的时间在讲如何计算误差项$\delta$,如何计算$\Delta$的矩阵,以及如何用Matlab去实现后向传播,然而最关键的问题——为什么要这么计算?前面计算的这些量到底代表着什么,Ng基本没有讲解,也没有给出数学的推导的例子。所以这次内容我不打算照着公开课的内容去写,在查阅了许多资料后,我想先从一个简单的神经网络的梯度推导入手,理解后向传播算法的基本工作原理以及每个符号代表的实际意义,然后再按照课程的给出BP计算的具体步骤,这样更有助于理解。

简单神经网络的后向传播(Backpropagration, BP)算法

1. 回顾之前的前向传播(ForwardPropagration, FP)算法

FP算法还是很简单的,说白了就是根据前一层神经元的值,先加权然后取sigmoid函数得到后一层神经元的值,写成数学的形式就是:

$$a^{(1)}=X$$

$$z^{(2)}=\Theta^{(1)}a^{(1)}$$

$$a^{(2)}=g(z^{(2)})$$

$$z^{(3)}=\Theta^{(2)}a^{(2)}$$

$$a^{(3)}=g(z^{(3)})$$

$$z^{(4)}=\Theta^{(3)}a^{(3)}$$

$$a^{(4)}=g(z^{(4)})$$

2. 回顾神经网络的代价函数(不含regularization项)

$J(\Theta) = -\frac{1}{m}\left[\sum\limits_{i=1}^{m}\sum\limits_{k=1}^{K}y^{(i)}_{k}log(h_\theta(x^{(i)}))_k + (1-y^{(i)}_k)log(1-(h_\theta(x^{(i)}))_k)\right]$

3. 一个简单神经网络的BP推导过程

BP算法解决了什么问题?我们已经有了代价函数$J(\Theta)$,接下来我们需要利用梯度下降算法(或者其他高级优化算法)对$J(\Theta)$进行优化从而得到训练参数$\Theta$,然而关键问题是,优化算法需要传递两个重要的参数,一个代价函数$J(\Theta)$,另一个是代价函数的梯度$\frac{\partial J(\Theta)}{\partial \Theta}$,BP算法其实就是解决如何计算梯度的问题

下面我们从一个简单的例子入手考虑如何从数学上计算代价函数的梯度,考虑如下简单的神经网络(为方便起见,途中已经给出了前向传播(FP)的计算过程),该神经网络有三层神经元,对应的有两个权重矩阵$\Theta^{(1)}$和$\Theta^{(2)}$,为计算梯度我们只需要计算两个偏导数即可:$\frac{\partial J(\Theta)}{\partial\Theta^{(1)}}$和$\frac{\partial J(\Theta)}{\partial\Theta^{(2)}}$。

首先我们先计算第2个权重矩阵的偏导数,即$\frac{\partial}{\partial\Theta^{(2)}}J(\Theta)$。首先我们需要在$J(\Theta)$和$\Theta^{(2)}$之间建立联系,很容易可以看到$J(\Theta)$的值取决于$h_\theta(x)$,而$h_\theta(x)=a^{(3)}$, $a^{3}$又是由$z^{(3)}$取sigmoid得到,最后$z^{(3)}=\Theta^{(2)}\times a^{(2)}$,所以他们之间的联系可以如下表示:

按照求导的链式法则,我们可以先求$J(\Theta)$对$z^{(3)}$的导数,然后乘以$z^{(3)}$对$\Theta^{(2)}$的导数,即

$$\frac{\partial}{\partial\Theta^{(2)}}J(\Theta) = \frac{\partial}{\partial z^{(3)}}J(\Theta) \times \frac{\partial z^{(3)}}{\partial \Theta^{(2)}} $$

由$z^{(3)}=\Theta^{(2)}a^{(2)}$不难计算$\frac{\partial z^{(3)}}{\partial \Theta^{(2)}}=(a^{(2)})^T$,令$\frac{\partial}{\partial z^{(3)}}J(\Theta)=\delta^{(3)}$,上式可以重写为

$$\frac{\partial}{\partial\Theta^{(2)}}J(\Theta) =\delta^{(3)} (a^{(2)})^T$$

接下来仅需要计算$\delta^{(3)}$即可,由上一章的内容我们已经知道$g'(z)=g(z)(1-g(z))$, $h_\theta(x)=a^{(3)}=g(z^{(3)})$,忽略前面的$1/m\sum\limits_{i=1}^{m}$(这里我们只对一个example推导,最后累加即可)

$$\begin{aligned}\delta^{(3)}&=\frac{\partial J(\Theta)}{z^{(3)}}\\&= (-y)\frac{1}{g(z^{(3)})}g^{'}(z^{(3)})-(1-y)\frac{1}{1-g(z^{(3)})} [1-g(z^{(3)})]'\\&=-y(1-g(z^{(3)}))+(1-y)g(z^{(3)})\\&=-y+g(z^{(3)})\\&=-y+a^{(3)}\end{aligned}$$

至此我们已经得到$J(\Theta)$对$\Theta^{(2)}$的偏导数,即

$$\frac{\partial J(\Theta)}{\partial\Theta^{(2)}}=(a^{(2)})^T\delta^{(3)}$$

$$\delta^{(3)}=a^{(3)}-y$$

接下来我们需要求$J(\Theta)$对$\Theta^{(1)}$的偏导数,$J(\Theta)$对$\Theta^{(1)}$的依赖关系如下:

根据链式求导法则有

$$\begin{aligned}\frac{\partial J(\Theta)}{\partial \Theta^{(1)}} &= \frac{\partial J(\Theta)}{\partial z^{(3)}} \frac{\partial z^{(3)}}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial \Theta^{(1)}}  \end{aligned}$$

我们分别计算等式右边的三项可得:

$$ \frac{\partial J(\Theta)}{\partial z^{(3)}}=\delta^{(3)}$$

$$\frac{\partial z^{(3)}}{\partial a^{(2)}}=(\Theta^{(2)})^T$$

$$\frac{\partial a^{(2)}}{\partial \Theta^{(1)}}=\frac{\partial a^{(2)}}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial \Theta^{(1)}}=g'(z^{(2)}) a^{(1)}$$

带入后得

$$\frac{\partial J(\Theta)}{\partial \Theta^{(1)}}=(a^{(1)})^T \delta^{(3)} (\Theta^{(2)})^T g'(z^{(2)})$$

令$\delta^{(2)}=\delta^{(3)} (\Theta^{(2)})^Tg'(z^{(2)})$, 上式可以重写为

$$\frac{\partial J(\Theta)}{\partial \Theta^{(1)}}=(a^{(1)})^T \delta^{(2)}$$

$$\delta^{(2)}=\delta^{(3)} (\Theta^{(2)})^T g'(z^{(2)})$$

把上面的结果放在一起,我们得到$J(\Theta)$对两个权重矩阵的偏导数为:

$$\delta^{(3)}=a^{(3)}-y$$

$$\frac{\partial J(\Theta)}{\partial\Theta^{(2)}}=(a^{(2)})^T\delta^{(3)}$$

$$\delta^{(2)}=\delta^{(3)} (\Theta^{(2)})^T g'(z^{(2)})$$

$$\frac{\partial J(\Theta)}{\partial \Theta^{(1)}}=(a^{(1)})^T \delta^{(2)}$$

观察上面的四个等式,我们发现

  • 偏导数可以由当前层神经元向量$a^{(l)}$与下一层的误差向量$\delta^{(l+1)}$相乘得到
  • 当前层的误差向量$\delta^{(l)}$可以由下一层的误差向量$\delta^{(l+1)}$与权重矩阵$\Delta^{l}$的乘积得到

所以可以从后往前逐层计算误差向量(这就是后向传播的来源),然后通过简单的乘法运算得到代价函数对每一层权重矩阵的偏导数。到这里算是终于明白为什么要计算误差向量,以及为什么误差向量之间有递归关系了。尽管这里的神经网络十分简单,推导过程也不是十分严谨,但是通过这个简单的例子,基本能够理解后向传播算法的工作原理了。

严谨的后向传播算法(计算梯度)

假设我们有$m$个训练example,$L$层神经网络,并且此处考虑正则项,即

$J(\Theta) = -\frac{1}{m}\left[\sum\limits_{i=1}^{m}\sum\limits_{k=1}^{K}y^{(i)}_{k}log(h_\theta(x^{(i)}))_k + (1-y^{(i)}_k)log(1-(h_\theta(x^{(i)}))_k)\right] + \frac{\lambda}{2m}\sum\limits_{l=1}^{L-1}\sum\limits_{i=1}^{s_l}\sum\limits_{j=1}^{s_{l+1}}(\Theta_{ji}^{(l)})^2$

初始化:设置$\Delta^{(l)}_{ij}=0$ (理解为对第$l$层的权重矩阵的偏导累加值)

For i = 1 : m

  • 设置 $a^{(1)}=X$
  • 通过前向传播算法(FP)计算对各层的预测值$a^{(l)}$,其中$l=2,3,4,\ldots,L$
  • 计算最后一层的误差向量 $\delta^{(L)}=a^{(L)}-y$,利用后向传播算法(BP)从后至前逐层计算误差向量 $\delta^{(L-1)}, \delta^{(L-1)}, \ldots, \delta^{(2)}$, 计算公式为$\delta^{(l)}=(\Theta^{(l)})^T\delta^{(l+1)}.*g'(z^{(l)})$
  • 更新$\Delta^{(l)}=\Delta^{(l)}+\delta^{(l+1)}(a^{(l)})^T$

end // for

计算梯度:

$$D_{ij}^{(l)}=\frac{1}{m}\Delta^{(l)}_{ij},   j=0$$

$$D_{ij}^{(l)}=\frac{1}{m}\Delta^{(l)}_{ij}+\frac{\lambda}{m}\Theta_{ij}^{(l)},  j\neq 0$$

$$\frac{\partial J(\Theta)}{\partial \Theta^{(l)}}=D^{(l)}$$

BP实际运用中的技巧

1. 将参数展开成向量

对于四层三个权重矩阵参数$\Theta^{(1)}, \Theta^{(2)}, \Theta^{(3)}$将其展开成一个参数向量,Matlab code如下:

thetaVec = [Theta1(:); Theta2(:); Theta3(:)];

2. 梯度检查

为了保证梯度计算的正确性,可以用数值解进行检查,根据导数的定义

$$\frac{dJ(\theta)}{d\theta} \approx \frac{J(\theta + \epsilon)-J(\theta-\epsilon)}{2\epsilon}$$

Matlab Code 如下

for i = 1 : n
thetaPlus = theta;
thetaPlus(i) = thetaPlus(i) + EPS;
thetaMinus = theta;
thetaMinus(i) = thetaMinus(i) - EPS;
gradApprox(i) = (J(thetaPlus) - J(thetaMinus)) / (2 * EPS);
end

最后检查 gradApprox 是否约等于之前计算的梯度值即可。需要注意的是:因为近似的梯度计算代价很大,在梯度检查后记得关闭梯度检查的代码。

3. 随机初始化

初始权重矩阵的初始化应该打破对称性 (symmetry breaking),避免使用全零矩阵进行初始化。可以采用随机数进行初始化,即 $\Theta^{(l)}_{ij} \in [-\epsilon, +\epsilon]$

如何训练一个神经网络

  1. 随机初始化权重矩阵
  2. 利用前向传播算法(FP)计算模型预测值$h_\theta(x)$
  3. 计算代价函数$J(\Theta)$
  4. 利用后向传播算法(BP)计算代价函数的梯度 $\frac{\partial J(\Theta)}{\partial \Theta^{(l)}}$
  5. 利用数值算法进行梯度检查(gradient checking),确保正确后关闭梯度检查
  6. 利用梯度下降(或者其他优化算法)求得最优参数$\Theta$

附:一个简短的后向传播教学视频

参考文献

[1] Andrew Ng Coursera 公开课第五周

[2] Derivation of Backpropagation. http://web.cs.swarthmore.edu/~meeden/cs81/s10/BackPropDeriv.pdf

[3] Wikipedia: Backpropagation. https://en.wikipedia.org/wiki/Backpropagation

[4] How the backpropagation algorithm works. http://neuralnetworksanddeeplearning.com/chap2.html

[5] 神经网络和反向传播算法推导. http://www.mamicode.com/info-detail-671452.html

机器学习公开课笔记(5):神经网络(Neural Network)——学习的更多相关文章

  1. 机器学习公开课笔记(4):神经网络(Neural Network)——表示

    动机(Motivation) 对于非线性分类问题,如果用多元线性回归进行分类,需要构造许多高次项,导致特征特多学习参数过多,从而复杂度太高. 神经网络(Neural Network) 一个简单的神经网 ...

  2. Andrew Ng机器学习公开课笔记 -- 支持向量机

    网易公开课,第6,7,8课 notes,http://cs229.stanford.edu/notes/cs229-notes3.pdf SVM-支持向量机算法概述, 这篇讲的挺好,可以参考   先继 ...

  3. Andrew Ng机器学习公开课笔记 -- 学习理论

    网易公开课,第9,10课 notes,http://cs229.stanford.edu/notes/cs229-notes4.pdf 这章要讨论的问题是,如何去评价和选择学习算法   Bias/va ...

  4. 机器学习公开课笔记(8):k-means聚类和PCA降维

    K-Means算法 非监督式学习对一组无标签的数据试图发现其内在的结构,主要用途包括: 市场划分(Market Segmentation) 社交网络分析(Social Network Analysis ...

  5. Andrew Ng机器学习公开课笔记–Principal Components Analysis (PCA)

    网易公开课,第14, 15课 notes,10 之前谈到的factor analysis,用EM算法找到潜在的因子变量,以达到降维的目的 这里介绍的是另外一种降维的方法,Principal Compo ...

  6. Andrew Ng机器学习公开课笔记 – Factor Analysis

    网易公开课,第13,14课 notes,9 本质上因子分析是一种降维算法 参考,http://www.douban.com/note/225942377/,浅谈主成分分析和因子分析 把大量的原始变量, ...

  7. Andrew Ng机器学习公开课笔记 -- Regularization and Model Selection

    网易公开课,第10,11课 notes,http://cs229.stanford.edu/notes/cs229-notes5.pdf   Model Selection 首先需要解决的问题是,模型 ...

  8. 机器学习公开课笔记(3):Logistic回归

    Logistic 回归 通常是二元分类器(也可以用于多元分类),例如以下的分类问题 Email: spam / not spam Tumor: Malignant / benign 假设 (Hypot ...

  9. Andrew Ng机器学习公开课笔记–Reinforcement Learning and Control

    网易公开课,第16课 notes,12 前面的supervised learning,对于一个指定的x可以明确告诉你,正确的y是什么 但某些sequential decision making问题,比 ...

随机推荐

  1. iOS keyChain 的使用

    详细资料,请参看苹果官方文档Keychain Services Reference . ios中的keychain,用于保存用户的机密信息,对keychain的操作有4种,就是 增,删,改,查: Se ...

  2. 游戏服java程序启动,显示内存溢出

    1.OutOfMemoryError:Java heap space 过程:服务器上面的mysql突然异常重启,导致了程序启动的时候报错 问题1:OutOfMemoryError:Java heap ...

  3. 内存管理_JAVA内存管理

    Java虚拟机规范中试图定义一种Java内存模型(Java Memory Model,JMM)来屏蔽各个硬件平台和操作系统的内存访问差异,以实现让Java程序在各种平台下都能达到一致的内存访问效果.那 ...

  4. Effective C++ -----条款29:为“异常安全”而努力是值得的

    异常安全函数(Exception-safe functions)即使发生异常也不会泄露资源或允许任何数据结构败坏.这样的函数区分为三种可能的保证:基本型.强烈型.不抛异常型. “强烈保证”往往能够以c ...

  5. sqlserverJDBC驱动链接

    final String DRIVER="com.microsoft.jdbc.sqlserver.SQLServerDriver"; final String URL=" ...

  6. JS 基本语句

    1.循环中必备的条件: 初始值  循环条件  状态改变   循环体 for(初始值  循环条件  状态改变)    {       循环体     } for(var i=0;i<100;i++ ...

  7. OKhttp的封装(上)

    自从介绍了OKhttp3的一些基本使用之后,又偷了下懒,所以它的续篇被搁置了一段时间,现在补充. OKhttpManager.Class  请求工具类 package com.example.admi ...

  8. 【资料】Boost的资料

    http://blog.csdn.net/pongba/article/details/1561110

  9. Rsync+lsync实现触发式实时同步

    使用rsync+lsync实现触发式实时同步 服务器信息 centos6.5 主:192.168.5.4 搭建lsync 从:192.168.5.3 搭建rsync 1.1 从服务器设置 # yum ...

  10. Keepalived虚拟ip

    linux下如何设置vip(虚拟ip) 在做HA的时候需要为服务器设计虚拟IP,也就是一个主机对应多个IP地址?刚听起来好神奇,原来这样也是可能的看了下面的这个链接 自己配了一下http://hi.b ...