Going from u to v or from v to u?
Time Limit: 2000MS   Memory Limit: 65536K
     

Description

In order to make their sons brave, Jiajia and Wind take them to a big cave. The cave has n rooms, and one-way corridors connecting some rooms. Each time, Wind choose two rooms x and y, and ask one of their little sons go from one
to the other. The son can either go from x to y, or from y to x. Wind promised that her tasks are all possible, but she actually doesn't know how to decide if a task is possible. To make her life easier, Jiajia decided to choose a cave in which every pair
of rooms is a possible task. Given a cave, can you tell Jiajia whether Wind can randomly choose two rooms without worrying about anything?

Input

The first line contains a single integer T, the number of test cases. And followed T cases.



The first line for each case contains two integers n, m(0 < n < 1001,m < 6000), the number of rooms and corridors in the cave. The next m lines each contains two integers u and v, indicating that there is a corridor connecting room u and room v directly.

Output

The output should contain T lines. Write 'Yes' if the cave has the property stated above, or 'No' otherwise.

Sample Input

1
3 3
1 2
2 3
3 1

Sample Output

Yes

Source

POJ Monthly--2006.02.26,zgl & twb





题意:jiajia有一个洞穴,洞穴中有n个房间,房间的连接是有方向的,jiajia想知道u与v之间是不是有路径u->v或v->u





思路:单连通问题,首先将图中的强连通的部分进行缩点,构成一颗树,接下来拓扑排序,判断拓扑排序的两点之间是不是有边,如果没有边则图不符合要求。



#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <stack>
#include <queue>
#include <algorithm> using namespace std; const int Max = 1100; const int INF = 0x3f3f3f3f; typedef struct node
{
int v; int next; }Line ; Line Li[Max*6]; int Head[Max],top; int Map[Max][Max]; int Du[Max],pre[Max]; int vis1[Max],dfn[Max],low[Max]; bool vis2[Max]; int dep; int Point[Max*5][2],Num; int topo[Max],num; int a[Max],ToNum; stack < int >S; void AddEdge(int u,int v)
{
Li[top].v = v; Li[top].next = Head[u]; Head[u] = top++;
} int Find(int x)
{
return pre[x]==-1?x:pre[x] = Find(pre[x]);
} void Tarjan(int u) //强连通缩点
{ dfn[u] = low[u] = dep++; vis1[u] = 1; S.push(u); for(int i=Head[u];i!=-1;i=Li[i].next)
{
if(vis1[Li[i].v]==1)
{
low[u]=min(low[u],dfn[Li[i].v]);
}
if(vis1[Li[i].v]==0)
{
Tarjan(Li[i].v); low[u]=min(low[u],low[Li[i].v]);
} if(vis2[Li[i].v])
{
Point[Num][0]=u; Point[Num++][1]=Li[i].v;
}
} if(low[u]==dfn[u]) //如果low[u]==dfn[u],则说明是强连通的根节点。
{
vis2[u]=true; topo[num++] = u; while(1)
{
if(S.empty())
{
break;
}
int v = S.top(); S.pop(); vis1[v]=2; if(v==u)
{
break;
}
pre[v]=u; }
}
} void Toposort()//BFS拓扑排序
{ queue<int>Q;
for(int i=0;i<num;i++)
{
if(Du[topo[i]]==0)
{
Q.push(topo[i]); }
}
while(!Q.empty())
{
int u=Q.front(); a[ToNum++]=u; Q.pop(); for(int i=0;i<num;i++)
{
if(Map[u][topo[i]])
{
Du[topo[i]]--; if(Du[topo[i]]==0)
{
Q.push(topo[i]);
}
}
}
}
} int main()
{ int T; int n,m; scanf("%d",&T); while(T--)
{
scanf("%d %d",&n,&m); top = 0; memset(Head,-1,sizeof(Head)); int u,v; for(int i=0;i<m;i++)
{
scanf("%d %d",&u,&v); AddEdge(u,v);
} memset(vis1,0,sizeof(vis1)); memset(Map,0,sizeof(Map)); memset(vis2,false,sizeof(vis2)); memset(Du,0,sizeof(Du)); memset(pre,-1,sizeof(pre)); dep = 0; Num =0 ;num = 0; while(!S.empty())
{
S.pop();
} for(int i=1;i<=n;i++)
{
if(vis1[i]==0)
{
Tarjan(i);
}
}
for(int i=0;i<Num;i++)
{ int x = Find(Point[i][0]); int y = Find(Point[i][1]); Map[x][y]=1; Du[y]++;
} ToNum = 0; Toposort(); bool flag=false; for(int i=0;i<ToNum-1;i++)
{
if(!Map[a[i]][a[i+1]])//判断相邻的是不是存在边
{
flag=true; break;
}
} if(flag)
{
printf("No\n");
}
else
{
printf("Yes\n");
} } return 0;
}

Going from u to v or from v to u?_POJ2762强连通+并查集缩点+拓扑排序的更多相关文章

  1. POJ2762 Going from u to v or from v to u?(判定单连通图:强连通分量+缩点+拓扑排序)

    这道题要判断一张有向图是否是单连通图,即图中是否任意两点u和v都存在u到v或v到u的路径. 方法是,找出图中所有强连通分量,强连通分量上的点肯定也是满足单连通性的,然后对强连通分量进行缩点,缩点后就变 ...

  2. POJ 2762 Going from u to v or from v to u? (强连通分量缩点+拓扑排序)

    题目链接:http://poj.org/problem?id=2762 题意是 有t组样例,n个点m条有向边,取任意两个点u和v,问u能不能到v 或者v能不能到u,要是可以就输出Yes,否则输出No. ...

  3. poj 2762 Going from u to v or from v to u?【强连通分量缩点+拓扑排序】

    Going from u to v or from v to u? Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 15812 ...

  4. POJ 2762Going from u to v or from v to u?(强联通 + 缩点 + 拓扑排序)

    [题意]: 有N个房间,M条有向边,问能否毫无顾虑的随机选两个点x, y,使从①x到达y,或者,②从y到达x,一定至少有一条成立.注意是或者,不是且. [思路]: 先考虑,x->y或者y-> ...

  5. Java实现判断单联通(强连通缩点+拓扑排序)Going from u to v or from v to u

    Description In order to make their sons brave, Jiajia and Wind take them to a big cave. The cave has ...

  6. POJ2762 Going from u to v or from v to u? 强连通分量缩点+拓扑排序

    题目链接:https://vjudge.net/contest/295959#problem/I 或者 http://poj.org/problem?id=2762 题意:输入多组样例,输入n个点和m ...

  7. Oracle基本数据字典:v$database、v$instance、v$version、dba_objects

    v$database: 视图结构: SQL> desc v$database; Name                                      Null?    Type - ...

  8. POJ2762 Going from u to v or from v to u(单连通 缩点)

    判断图是否单连通,先用强连通分图处理,再拓扑排序,需注意: 符合要求的不一定是链拓扑排序列结果唯一,即在队列中的元素始终只有一个 #include<cstdio> #include< ...

  9. 临时文件相关的v$tempfile v$sort_usage与V$tempseg_usage

    SQL> select username,user,segtype,segfile#,segblk#,extents,segrfno# from v$sort_usage; SEGFILE#代表 ...

随机推荐

  1. 利用HTML5的一个重要特性 —— DeviceOrientation来实现手机网站上的摇一摇功能

      介绍之前做两个声明: 以下代码可以直接运行,当然你别忘了引用jQuery才行. <script> // DeviceOrientation将底层的方向传感器和运动传感器进行了高级封装, ...

  2. make:cc 命令未找到的解决方法

    安装redis时遇到的问题 make:cc 命令未找到的解决方法 没安装gcc,然后安装 yum install gcc yum install gcc-c++

  3. mztree使用示例

    mztree使用:http://www.myexception.cn/open-source/1014169.html jquery的treeview使用:http://www.cnblogs.com ...

  4. WPF中ComboBox绑定数据库自动读取产生数据

    前台端 <ComboBox HorizontalAlignment="Name="cmb_SSBM" DisplayMemberPath="NAME&qu ...

  5. NGUI事件监听之UIEventListener的使用

    NGUI的事件绑定可以使用 UIButtonMessage 在一个游戏对象上添加Button Message组件: 在Button Message组件上添加要通知的游戏对象上所挂载的脚本的方法 Tar ...

  6. zju(8)串口通信实验

    1.实验目的 1.学习和掌握linux下串口的操作方法以及应用程序的编写: 二.实验内容 1.编写EduKit-IV实验箱Linux操作系统下串口的应用程序,运行时只需要将串口线的一端连接到开发板的c ...

  7. ss命令

    看到好的博文,所以记录一下.本文出自转载. ss是Socket Statistics的缩写.顾名思义,ss命令可以用来获取socket统计信息,它可以显示和netstat类似的内容.但ss的优势在于它 ...

  8. POM.xml的配置实例

    <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/20 ...

  9. codeforces575A Fibonotci

    题目大意:f[k]=f[k-1]*s[(n-1)%n]+f[(k-2)]*s[(k-2)%n];会修改某一位置的s值,但循环不变,求f[k]; 矩阵快速幂裸题,由于有修改,所以需要线段树优化 #inc ...

  10. php一些特殊函数的使用实例详解

    <?php /* * PHP Array 函数大全 * * array() 创建数组. 3 array_change_key_case() 返回其键均为大写或小写的数组. 4 array_chu ...