Going from u to v or from v to u?
Time Limit: 2000MS   Memory Limit: 65536K
     

Description

In order to make their sons brave, Jiajia and Wind take them to a big cave. The cave has n rooms, and one-way corridors connecting some rooms. Each time, Wind choose two rooms x and y, and ask one of their little sons go from one
to the other. The son can either go from x to y, or from y to x. Wind promised that her tasks are all possible, but she actually doesn't know how to decide if a task is possible. To make her life easier, Jiajia decided to choose a cave in which every pair
of rooms is a possible task. Given a cave, can you tell Jiajia whether Wind can randomly choose two rooms without worrying about anything?

Input

The first line contains a single integer T, the number of test cases. And followed T cases.



The first line for each case contains two integers n, m(0 < n < 1001,m < 6000), the number of rooms and corridors in the cave. The next m lines each contains two integers u and v, indicating that there is a corridor connecting room u and room v directly.

Output

The output should contain T lines. Write 'Yes' if the cave has the property stated above, or 'No' otherwise.

Sample Input

1
3 3
1 2
2 3
3 1

Sample Output

Yes

Source

POJ Monthly--2006.02.26,zgl & twb





题意:jiajia有一个洞穴,洞穴中有n个房间,房间的连接是有方向的,jiajia想知道u与v之间是不是有路径u->v或v->u





思路:单连通问题,首先将图中的强连通的部分进行缩点,构成一颗树,接下来拓扑排序,判断拓扑排序的两点之间是不是有边,如果没有边则图不符合要求。



#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <stack>
#include <queue>
#include <algorithm> using namespace std; const int Max = 1100; const int INF = 0x3f3f3f3f; typedef struct node
{
int v; int next; }Line ; Line Li[Max*6]; int Head[Max],top; int Map[Max][Max]; int Du[Max],pre[Max]; int vis1[Max],dfn[Max],low[Max]; bool vis2[Max]; int dep; int Point[Max*5][2],Num; int topo[Max],num; int a[Max],ToNum; stack < int >S; void AddEdge(int u,int v)
{
Li[top].v = v; Li[top].next = Head[u]; Head[u] = top++;
} int Find(int x)
{
return pre[x]==-1?x:pre[x] = Find(pre[x]);
} void Tarjan(int u) //强连通缩点
{ dfn[u] = low[u] = dep++; vis1[u] = 1; S.push(u); for(int i=Head[u];i!=-1;i=Li[i].next)
{
if(vis1[Li[i].v]==1)
{
low[u]=min(low[u],dfn[Li[i].v]);
}
if(vis1[Li[i].v]==0)
{
Tarjan(Li[i].v); low[u]=min(low[u],low[Li[i].v]);
} if(vis2[Li[i].v])
{
Point[Num][0]=u; Point[Num++][1]=Li[i].v;
}
} if(low[u]==dfn[u]) //如果low[u]==dfn[u],则说明是强连通的根节点。
{
vis2[u]=true; topo[num++] = u; while(1)
{
if(S.empty())
{
break;
}
int v = S.top(); S.pop(); vis1[v]=2; if(v==u)
{
break;
}
pre[v]=u; }
}
} void Toposort()//BFS拓扑排序
{ queue<int>Q;
for(int i=0;i<num;i++)
{
if(Du[topo[i]]==0)
{
Q.push(topo[i]); }
}
while(!Q.empty())
{
int u=Q.front(); a[ToNum++]=u; Q.pop(); for(int i=0;i<num;i++)
{
if(Map[u][topo[i]])
{
Du[topo[i]]--; if(Du[topo[i]]==0)
{
Q.push(topo[i]);
}
}
}
}
} int main()
{ int T; int n,m; scanf("%d",&T); while(T--)
{
scanf("%d %d",&n,&m); top = 0; memset(Head,-1,sizeof(Head)); int u,v; for(int i=0;i<m;i++)
{
scanf("%d %d",&u,&v); AddEdge(u,v);
} memset(vis1,0,sizeof(vis1)); memset(Map,0,sizeof(Map)); memset(vis2,false,sizeof(vis2)); memset(Du,0,sizeof(Du)); memset(pre,-1,sizeof(pre)); dep = 0; Num =0 ;num = 0; while(!S.empty())
{
S.pop();
} for(int i=1;i<=n;i++)
{
if(vis1[i]==0)
{
Tarjan(i);
}
}
for(int i=0;i<Num;i++)
{ int x = Find(Point[i][0]); int y = Find(Point[i][1]); Map[x][y]=1; Du[y]++;
} ToNum = 0; Toposort(); bool flag=false; for(int i=0;i<ToNum-1;i++)
{
if(!Map[a[i]][a[i+1]])//判断相邻的是不是存在边
{
flag=true; break;
}
} if(flag)
{
printf("No\n");
}
else
{
printf("Yes\n");
} } return 0;
}

Going from u to v or from v to u?_POJ2762强连通+并查集缩点+拓扑排序的更多相关文章

  1. POJ2762 Going from u to v or from v to u?(判定单连通图:强连通分量+缩点+拓扑排序)

    这道题要判断一张有向图是否是单连通图,即图中是否任意两点u和v都存在u到v或v到u的路径. 方法是,找出图中所有强连通分量,强连通分量上的点肯定也是满足单连通性的,然后对强连通分量进行缩点,缩点后就变 ...

  2. POJ 2762 Going from u to v or from v to u? (强连通分量缩点+拓扑排序)

    题目链接:http://poj.org/problem?id=2762 题意是 有t组样例,n个点m条有向边,取任意两个点u和v,问u能不能到v 或者v能不能到u,要是可以就输出Yes,否则输出No. ...

  3. poj 2762 Going from u to v or from v to u?【强连通分量缩点+拓扑排序】

    Going from u to v or from v to u? Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 15812 ...

  4. POJ 2762Going from u to v or from v to u?(强联通 + 缩点 + 拓扑排序)

    [题意]: 有N个房间,M条有向边,问能否毫无顾虑的随机选两个点x, y,使从①x到达y,或者,②从y到达x,一定至少有一条成立.注意是或者,不是且. [思路]: 先考虑,x->y或者y-> ...

  5. Java实现判断单联通(强连通缩点+拓扑排序)Going from u to v or from v to u

    Description In order to make their sons brave, Jiajia and Wind take them to a big cave. The cave has ...

  6. POJ2762 Going from u to v or from v to u? 强连通分量缩点+拓扑排序

    题目链接:https://vjudge.net/contest/295959#problem/I 或者 http://poj.org/problem?id=2762 题意:输入多组样例,输入n个点和m ...

  7. Oracle基本数据字典:v$database、v$instance、v$version、dba_objects

    v$database: 视图结构: SQL> desc v$database; Name                                      Null?    Type - ...

  8. POJ2762 Going from u to v or from v to u(单连通 缩点)

    判断图是否单连通,先用强连通分图处理,再拓扑排序,需注意: 符合要求的不一定是链拓扑排序列结果唯一,即在队列中的元素始终只有一个 #include<cstdio> #include< ...

  9. 临时文件相关的v$tempfile v$sort_usage与V$tempseg_usage

    SQL> select username,user,segtype,segfile#,segblk#,extents,segrfno# from v$sort_usage; SEGFILE#代表 ...

随机推荐

  1. acm常见算法及例题

    转自:http://blog.csdn.net/hengjie2009/article/details/7540135 acm常见算法及例题  初期:一.基本算法:     (1)枚举. (poj17 ...

  2. html中a标签做容器的问题

    今天试验了一下a标签当作容器的问题,若a包含的容器中没有a标签的话,a标签是可以被当作成容器使用的,在谷歌浏览器这种浏览器中是可行的,但是在低版本的IE中会有bug出现,就是浏览器在解析的时候会把a标 ...

  3. SDWebImage笔记

    SDWebImage托管在github上.https://github.com/rs/SDWebImage 这个类库提供一个UIImageView类别以支持加载来自网络的远程图片.具有缓存管理.异步下 ...

  4. nyoj-71

    描述 进行一次独木舟的旅行活动,独木舟可以在港口租到,并且之间没有区别.一条独木舟最多只能乘坐两个人,且乘客的总重量不能超过独木舟的最大承载量.我们要尽量减少这次活动中的花销,所以要找出可以安置所有旅 ...

  5. Unity学习疑问记录之隐藏与显示物体

    Unity3D中隐藏与显示物体的一些操作 http://unity3d.9tech.cn/news/2013/0930/33019.html

  6. Codeforces Round #378 (Div. 2) C D

    在实验室通宵 一边做水题一边准备随时躲起来以免被门卫大爷巡查发现..结果居然没来.. 本来以为可以加几分变个颜色..结果挂了CD...状态有点差...思维不太活跃 沉迷暴力不能自拔 D 给出n个长方体 ...

  7. Redis和Memcache对比及选择(转载)

  8. 1CSS与文档

    层叠样式表(Cascading Style Sheet,CSS)的功能十分强大,可以影响一个或一组文档的表现. 为什么结构化对HTML来说很重要:1.非结构化页面使得建立内容索引极为困难.2.缺乏结构 ...

  9. youtube视频下载

    开你的电脑,然后打开你的浏览器,浏览器可以是IE.Chrome.Firefox等等   在浏览器中输入这个网址:en.savefrom.net,点击Enter键,进入这个网页:   打开你需要下载的y ...

  10. 转: Linux磁盘扩容

    from:https://www.rootusers.com/how-to-increase-the-size-of-a-linux-lvm-by-expanding-the-virtual-mach ...