Stanford机器学习笔记-2.Logistic Regression
Content:
2 Logistic Regression.
2.1 Classification.
2.2 Hypothesis representation.
2.2.1 Interpreting hypothesis output.
2.3 Decision boundary.
2.3.1 Non-linear decision boundaries.
2.4 Cost function for logistic regression.
2.4.1 A convex logistic regression cost function.
2.5 Simplified cost function and gradient descent.
2.5.1 Probabilistic interpretation for cost function.
2.5.2 Gradient Descent for logistic regression.
2.6 Multiclass classification problem
key words: logistic regression, classification, decision boundary, convex function, One-vs-all












2.6 Multiclass classification problem
现实中也常遇到多分类问题(multiclass classification problem),如判断手写的数字是0~9中的哪一个就是一个有10类的问题。多分类学习的基本思路是“拆解法”,即将多分类任务拆为若干个二分类任务求解。具体来说,先对问题进行拆分,然后为拆分出的每个二分类任务训练一个分类器(也就是h(x));在预测时,对这些分类器的预测结果进行集成。
下面介绍一个常用的拆分策略-“One-vs-all”.
One-vs-all每次将一个类的样例作为正例(“1”),所有其他类作为反例(“0”)来训练n个分类器。在预测时,有两种情况看
- 情况1:若仅有一个分类器预测为正例,则对应的类别标记作为最终分类结果;
- 情况2:若有多个分类器预测为正例,则选择分类器的预测置信度最大的类别标记为分类结果,也就是
。
例如对于图2-10所示的多分类问题,我们先将三角形,正方形,叉分别标记为类别1,2,3,然后做如下划分:
- 先将三角形看作正例“1”,正方形和叉看作反例“0”,训练出hθ1(x)
- 再将正方形看作正例“1”,三角形和叉看作反例“0”,训练出hθ2(x)
- 最后将叉看作正例“1”,三角形和正方形看作反例“0”,训练出hθ3(x)
预测时每一个预测值都是一个形如[hθ1(x), hθ2(x), hθ3(x)]的向量。选出最大的h(x),它的上标就是对应的类别标记。例如若预测值为[0.13, 0.24, 0.79],对应的就是上文所说的情况1,即只有hθ3(x) > 0.5表现为正例,所以应该认为是属于3标记类,即为叉。若预测值为[0.12, 0.83, 0.56], 对应的就是上文所说的情况2,hθ2(x) 和hθ3(x)都大于0.5,都预测为正例,但hθ2(x)> hθ3(x),所以应该预测是属于2标记类,即为正方形。

图2-10
Stanford机器学习笔记-2.Logistic Regression的更多相关文章
- Coursera台大机器学习课程笔记9 -- Logistic Regression
如果只想得到某种概率,而不是简单的分类,那么该如何做呢?在误差衡量问题上,如何选取误差函数这段很有意思. 接下来是如何最小化Ein,由于Ein是可凸优化的,所以采用的是梯度下降法:只要达到谷底,就找到 ...
- Coursera台大机器学习技法课程笔记05-Kernel Logistic Regression
这一节主要讲的是如何将Kernel trick 用到 logistic regression上. 从另一个角度来看soft-margin SVM,将其与 logistic regression进行对比 ...
- 【笔记】机器学习 - 李宏毅 - 6 - Logistic Regression
Logistic Regression 逻辑回归 逻辑回归与线性回归有很多相似的地方.后面会做对比,先将逻辑回归函数可视化一下. 与其所对应的损失函数如下,并将求max转换为min,并转换为求指数形式 ...
- Stanford机器学习笔记-8. 支持向量机(SVMs)概述
8. Support Vector Machines(SVMs) Content 8. Support Vector Machines(SVMs) 8.1 Optimization Objection ...
- Stanford机器学习笔记-7. Machine Learning System Design
7 Machine Learning System Design Content 7 Machine Learning System Design 7.1 Prioritizing What to W ...
- Stanford机器学习---第一讲. Linear Regression with one variable
原文:http://blog.csdn.net/abcjennifer/article/details/7691571 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...
- Andrew Ng机器学习编程作业:Logistic Regression
编程作业文件: machine-learning-ex2 1. Logistic Regression (逻辑回归) 有之前学生的数据,建立逻辑回归模型预测,根据两次考试结果预测一个学生是否有资格被大 ...
- Stanford机器学习笔记-3.Bayesian statistics and Regularization
3. Bayesian statistics and Regularization Content 3. Bayesian statistics and Regularization. 3.1 Und ...
- 机器学习实战python3 Logistic Regression
代码及数据:https://github.com/zle1992/MachineLearningInAction logistic regression 优点:计算代价不高,易于理解实现,线性模型的一 ...
随机推荐
- JSCapture – 基于 HTML5 实现的屏幕捕捉库
JSCapture 是用纯 JavaScript 和 HTML5 实现的屏幕捕捉库.它可以让从您的浏览器中截图和记录在桌面的视频.JSCapture 使用 getUserMedia 来实现屏幕捕获.目 ...
- IP查询接口地址
腾讯的: http://fw.qq.com/ipaddress直接返回本机的IP地址对应的地区 新浪的:http://counter.sina.com.cn/ip?ip=IP地址返回Js数据,感觉不是 ...
- js资源加载优化
互联网应用或者访问量大的应用,对js的加载优化是不可少的.下面记录几种优化方法 CDN + 浏览器缓存 CDN(content delivery network)内容分发网络, 最传统的优化方式.其 ...
- 从零开始,做一个NodeJS博客(三):API实现-加载网易云音乐听歌排行
标签: NodeJS 0 研究了一天,翻遍了GitHub上各种网易云API库,也没有找到我想要的听歌排行API,可能这功能比较小众吧.但收获也不是没有,在 这里 明白了云音乐API加密的凶险,我等蒟蒻 ...
- Understanding the Uncertain Geographic Context Problem
"The areal units (zonal objects) used in many geographical studies are arbitrary, modifiable, a ...
- Android SurfaceView的生命周期
本文利用SurfaceView来实现视频的播放 本文地址:http://www.cnblogs.com/wuyudong/p/5851156.html,转载请注明源地址. 在main.xml布局文件添 ...
- Android 数据库的事务
什么是数据库的事务 事务(Transaction)是访问并可能更新数据库中各种数据项的一个程序执行单元(unit).事务通常由高级数据库操纵语言或编程语言书写的用户程序的执行所引起,并用形如begin ...
- 【代码笔记】iOS-饼图
一,效果图. 二,工程图. 三,代码. RootViewController.h #import <UIKit/UIKit.h> @class QuizChartView; @interf ...
- sql 2012 sequence 速记
CodeSELECT id INTO #t1 FROM sys_id WHERE id < 3 SELECT next value for sequencebase FROM #t1 DROP ...
- go的环境变量设置
GOROOT go的安装路劲 如:D:\Program Files\Go GOPATH go的工作路径 GOPATH可以设置多个.存放包文件.比如你引入 "xxx"包.那么go会去 ...