作业三:CART回归树

20大数据三班 博客链接
学号 201613336

问题一:

表1为拖欠贷款人员训练样本数据集,使用CART算法基于该表数据构造决策树模型,并使用表2中测试样本集确定剪枝后的最优子树。

问题二

要求

1.以上两题写出详细的计算步骤;

2.以上两题在作业本上完成后拍照上传。

问题一的解决方案:

问题二的解决方案

1、代码
点击查看代码
#author:qiao_px
#@Time 2022/11/2 12:29
#@File 作业三.py
import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeRegressor
from sklearn import linear_model # Data set
x = np.array(list(range(1, 11))).reshape(-1, 1)
y = np.array([5.56, 5.70, 5.91, 6.40, 6.80, 7.05, 8.90, 8.70, 9.00, 9.05]).ravel() # Fit regression model
model1 = DecisionTreeRegressor(max_depth=1)
model2 = DecisionTreeRegressor(max_depth=3)
model3 = linear_model.LinearRegression()
model1.fit(x, y)
model2.fit(x, y)
model3.fit(x, y) # Predict
X_test = np.arange(0.0, 10.0, 0.01)[:, np.newaxis]
y_1 = model1.predict(X_test)
y_2 = model2.predict(X_test)
y_3 = model3.predict(X_test) # Plot the results
plt.figure()
plt.scatter(x, y, s=20, edgecolor="black",
c="darkorange", label="data")
plt.plot(X_test, y_1, color="cornflowerblue",
label="max_depth=1", linewidth=2)
plt.plot(X_test, y_2, color="yellowgreen", label="max_depth=3", linewidth=2)
plt.plot(X_test, y_3, color='red', label='liner regression', linewidth=2)
plt.xlabel("data")
plt.ylabel("target")
plt.title("Decision Tree Regression")
plt.legend()
plt.show()
2、运行结果图

3、作业本手算过程

作业三:CART回归树的更多相关文章

  1. 大白话5分钟带你走进人工智能-第二十六节决策树系列之Cart回归树及其参数(5)

                                                    第二十六节决策树系列之Cart回归树及其参数(5) 上一节我们讲了不同的决策树对应的计算纯度的计算方法, ...

  2. 机器学习实战---决策树CART回归树实现

    机器学习实战---决策树CART简介及分类树实现 一:对比分类树 CART回归树和CART分类树的建立算法大部分是类似的,所以这里我们只讨论CART回归树和CART分类树的建立算法不同的地方.首先,我 ...

  3. CART回归树

    决策树算法原理(ID3,C4.5) 决策树算法原理(CART分类树) 决策树的剪枝 CART回归树模型表达式: 其中,数据空间被划分为R1~Rm单元,每个单元有一个固定的输出值Cm.这样可以计算模型输 ...

  4. 决策树CART回归树——算法实现

    决策树模型 选择最好的特征和特征的值进行数据集划分 根据上面获得的结果创建决策树 根据测试数据进行剪枝(默认没有数据的树分支被剪掉) 对输入进行预测 模型树 import numpy as np de ...

  5. 分类回归树(CART)

    概要 本部分介绍 CART,是一种非常重要的机器学习算法.   基本原理   CART 全称为 Classification And Regression Trees,即分类回归树.顾名思义,该算法既 ...

  6. 回归树(Regression Tree)

    目录 回归树 理论解释 算法流程 ID3 和 C4.5 能不能用来回归? 回归树示例 References 说到决策树(Decision tree),我们很自然会想到用其做分类,每个叶子代表有限类别中 ...

  7. 决策树算法原理(CART分类树)

    决策树算法原理(ID3,C4.5) CART回归树 决策树的剪枝 在决策树算法原理(ID3,C4.5)中,提到C4.5的不足,比如模型是用较为复杂的熵来度量,使用了相对较为复杂的多叉树,只能处理分类不 ...

  8. 《机器学习Python实现_10_10_集成学习_xgboost_原理介绍及回归树的简单实现》

    一.简介 xgboost在集成学习中占有重要的一席之位,通常在各大竞赛中作为杀器使用,同时它在工业落地上也很方便,目前针对大数据领域也有各种分布式实现版本,比如xgboost4j-spark,xgbo ...

  9. 机器学习技法-决策树和CART分类回归树构建算法

    课程地址:https://class.coursera.org/ntumltwo-002/lecture 重要!重要!重要~ 一.决策树(Decision Tree).口袋(Bagging),自适应增 ...

  10. cart中回归树的原理和实现

    前面说了那么多,一直围绕着分类问题讨论,下面我们开始学习回归树吧, cart生成有两个关键点 如何评价最优二分结果 什么时候停止和如何确定叶子节点的值 cart分类树采用gini系数来对二分结果进行评 ...

随机推荐

  1. js导出数据为excel表

    1.接口数据后端写, 2.代码如下: var params={ "filters":[ {"propertyCode":"sequenceNo&quo ...

  2. java判断上传图片格式

    由于客户上传图片将png的图片的后缀名改为jpg,所以通过后缀名判断不行,用下面这个方法可以 //判断是否是JPG格式 log.info("-1----进入JPG格式判断....." ...

  3. ES-索引库

    数据准备 本次学习涵盖ES简单查询,聚合查询,所以在创建测试库时会可以涵盖一些个性化字段,用于学习搜索用法 索引创建 几个疑问 1.能否用中文命名 安排:我用"蓝闪test",中英 ...

  4. Day23:个人小结的撰写&&对coderunner的熟悉

    今日完成的任务: 1.完成个人小结的撰写 2.阅读Moodle文档,了解Moodle平台以及Moodle出题格式  明日计划: 1.撰写总报告中的结论 2.将插件安装完成 每日小结: 为了研究题库,特 ...

  5. Delphi 从字符串中提取数字

    function GetNumberFromStr(strIn: string; sFlag: string): string; var i: Integer; tempStr: string; be ...

  6. Delphi 格式化函数Format、FormatDateTime与FormatFloat详解

    目录 Format函数 %d 代表一个整数 %u 代表一个无负号整数 %s 代表字符串 %f 代表浮点数(保留或凑够两位小数点 ) %g 代表浮点数(会去掉多余的 0) %n 代表浮点数(整数部分使用 ...

  7. [转载]OpenCV中的channel是什么意思?

    转载自https://answers.opencv.org/question/7585/meaning-of-channels/ 简单来说,就是描述一个pixel的颜色用多少个独立的参数描述,这个个数 ...

  8. 物理核与逻辑核-转 perf

    Linux和Windows 物理CPU.物理核.逻辑核--区别.关系和查看  cat /proc/cpuinfo命令部分输出信息的含义 physical id 物理封装的处理器的idprocessor ...

  9. 三.database阶段回顾

    阶段回顾: 1.mysql:文件管理软件 2.三部分: 服务端 sql语句 客户端 3.客户端 mysql navicat 4.授权操作 用户操作 授权操作 5.sql语句 数据库操作 create ...

  10. modelsim仿真含Xilinx原语代码块

    很早之前笔者已经写过关于modelsim仿真的文章了,不过之前笔者做的仿真都是有现成代码块的仿真.对于那些使用原语的代码块进行仿真时则需要产生相关的仿真库,笔者这里使用modeltech64_2020 ...