作业三:CART回归树
作业三:CART回归树
| 20大数据三班 | 博客链接 |
|---|---|
| 学号 | 201613336 |
问题一:
表1为拖欠贷款人员训练样本数据集,使用CART算法基于该表数据构造决策树模型,并使用表2中测试样本集确定剪枝后的最优子树。


问题二

要求
1.以上两题写出详细的计算步骤;
2.以上两题在作业本上完成后拍照上传。
问题一的解决方案:

问题二的解决方案
1、代码
点击查看代码
#author:qiao_px
#@Time 2022/11/2 12:29
#@File 作业三.py
import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeRegressor
from sklearn import linear_model
# Data set
x = np.array(list(range(1, 11))).reshape(-1, 1)
y = np.array([5.56, 5.70, 5.91, 6.40, 6.80, 7.05, 8.90, 8.70, 9.00, 9.05]).ravel()
# Fit regression model
model1 = DecisionTreeRegressor(max_depth=1)
model2 = DecisionTreeRegressor(max_depth=3)
model3 = linear_model.LinearRegression()
model1.fit(x, y)
model2.fit(x, y)
model3.fit(x, y)
# Predict
X_test = np.arange(0.0, 10.0, 0.01)[:, np.newaxis]
y_1 = model1.predict(X_test)
y_2 = model2.predict(X_test)
y_3 = model3.predict(X_test)
# Plot the results
plt.figure()
plt.scatter(x, y, s=20, edgecolor="black",
c="darkorange", label="data")
plt.plot(X_test, y_1, color="cornflowerblue",
label="max_depth=1", linewidth=2)
plt.plot(X_test, y_2, color="yellowgreen", label="max_depth=3", linewidth=2)
plt.plot(X_test, y_3, color='red', label='liner regression', linewidth=2)
plt.xlabel("data")
plt.ylabel("target")
plt.title("Decision Tree Regression")
plt.legend()
plt.show()
2、运行结果图

3、作业本手算过程

作业三:CART回归树的更多相关文章
- 大白话5分钟带你走进人工智能-第二十六节决策树系列之Cart回归树及其参数(5)
第二十六节决策树系列之Cart回归树及其参数(5) 上一节我们讲了不同的决策树对应的计算纯度的计算方法, ...
- 机器学习实战---决策树CART回归树实现
机器学习实战---决策树CART简介及分类树实现 一:对比分类树 CART回归树和CART分类树的建立算法大部分是类似的,所以这里我们只讨论CART回归树和CART分类树的建立算法不同的地方.首先,我 ...
- CART回归树
决策树算法原理(ID3,C4.5) 决策树算法原理(CART分类树) 决策树的剪枝 CART回归树模型表达式: 其中,数据空间被划分为R1~Rm单元,每个单元有一个固定的输出值Cm.这样可以计算模型输 ...
- 决策树CART回归树——算法实现
决策树模型 选择最好的特征和特征的值进行数据集划分 根据上面获得的结果创建决策树 根据测试数据进行剪枝(默认没有数据的树分支被剪掉) 对输入进行预测 模型树 import numpy as np de ...
- 分类回归树(CART)
概要 本部分介绍 CART,是一种非常重要的机器学习算法. 基本原理 CART 全称为 Classification And Regression Trees,即分类回归树.顾名思义,该算法既 ...
- 回归树(Regression Tree)
目录 回归树 理论解释 算法流程 ID3 和 C4.5 能不能用来回归? 回归树示例 References 说到决策树(Decision tree),我们很自然会想到用其做分类,每个叶子代表有限类别中 ...
- 决策树算法原理(CART分类树)
决策树算法原理(ID3,C4.5) CART回归树 决策树的剪枝 在决策树算法原理(ID3,C4.5)中,提到C4.5的不足,比如模型是用较为复杂的熵来度量,使用了相对较为复杂的多叉树,只能处理分类不 ...
- 《机器学习Python实现_10_10_集成学习_xgboost_原理介绍及回归树的简单实现》
一.简介 xgboost在集成学习中占有重要的一席之位,通常在各大竞赛中作为杀器使用,同时它在工业落地上也很方便,目前针对大数据领域也有各种分布式实现版本,比如xgboost4j-spark,xgbo ...
- 机器学习技法-决策树和CART分类回归树构建算法
课程地址:https://class.coursera.org/ntumltwo-002/lecture 重要!重要!重要~ 一.决策树(Decision Tree).口袋(Bagging),自适应增 ...
- cart中回归树的原理和实现
前面说了那么多,一直围绕着分类问题讨论,下面我们开始学习回归树吧, cart生成有两个关键点 如何评价最优二分结果 什么时候停止和如何确定叶子节点的值 cart分类树采用gini系数来对二分结果进行评 ...
随机推荐
- js 俄罗斯方块 canvas
俄罗斯方块背景- canvans 第一次写不知道说些什么好,直接上代码了@_@... jquery引入 <script src="https://cdn.bootcdn.net/aja ...
- 使用tkinter开发的一款登录和注册图形化界面
目录 项目介绍 登录功能 登录界面展示 登录主要功能 登录部分源码 注册功能 注册界面展示 注册主要功能 注册部分源码 源码地址 项目介绍 使用tkinter开发的一款登录和注册图形化界面 使用tki ...
- 用tkinter编写一个获取图片资源的GUI工具
目录 效果展示 导入tkinter库 窗口属性 按钮和输入框 文本输入框Text 运行 打包成exe文件 源码地址 本文可以学习到以下内容: 使用tkinter的Entry功能获取本地文件夹 使用tk ...
- 搭建Redis高可用集群的哨兵模式(Redis-Sentinel)【Windows环境】
参考 https://blog.csdn.net/itanping/article/details/100544152 哨兵模式搭建好,Java中配置和使用Redis高可用集群的哨兵模式,引入Jedi ...
- 性能测试-ps与vmstat
1.ps命令-获取当前系统的进程状态 ps >ps(process status) 获取帮助: man ps 获取当前系统的进程状态 ps-ef-eF-elv 使用标准语法查看系统上的每个进程 ...
- kali上的apache2
之前总是疑惑为什么kali上的apache服务称之为apache2,但是也没想到去找找答案,今天突然想到了,简单搜索了一下大致就是, 现在Apache HTTP 存在三种版本, 1.3 2.0 和2. ...
- AIX查看目录大小
cd $ORACLE_HOME cd .. du -sg * 16.35 dbhome_1
- 【NPDP专项练习】第七章 产品生命周期管理
第七章 产品生命周期管理 1.以下哪一项是产品生命周期缩短的原因之一? A 技术停滞不前 B 减少竞争 C 顾客要求更高 D 沟通障碍正在增加 答案:C 解析 A技术持续进步:B竞争加剧:D沟通增加 ...
- fetchAll 的小小分析
includes\database\prefetch.inc line 425 $this->defaultFetchStyle: fetch_object int 5protected $de ...
- ConvTranspose的output_padding问题
当stride>=2时,反向传播,由dy, w得到dx的时候,dx的形状不唯一. 例如input_shape (7,7)或者(8,8)在kernel(3,3)上,以stride=2进行卷积, 最 ...