Pytorch 实现线性回归
Pytorch 实现线性回归
import torch
from torch.utils import data
from torch import nn
# 合成数据
def synthetic_data(w, b, num_examples):
"""y = Xw + b + zs"""
X = torch.normal(0, 1, (num_examples, len(w)))
y = torch.matmul(X, w) + b
y += torch.normal(0, 0.01, y.shape)
return X, y.reshape((-1, 1))
# 用于合成数据的模板
true_w = torch.tensor([2, -3.4, 2])
true_b = 4.2
# 合成1000个数据
features, labels = synthetic_data(true_w, true_b, 1000)
# 随机批量加载数据
def load_array(data_arrays, batch_size, is_train=True):
dataset = data.TensorDataset(*data_arrays)
return data.DataLoader(dataset, batch_size, shuffle=is_train)
batch_size = 10
data_iter = load_array((features, labels), batch_size)
# 初始化线性网络,3输入1输出
net = nn.Sequential(nn.Linear(3, 1))
# 均方误差损失函数
loss = nn.MSELoss()
# 优化算法
trainer = torch.optim.SGD(net.parameters(), lr=0.03)
# 开始迭代
num_epochs = 3
for epoch in range(num_epochs):
for X, y in data_iter:
l = loss(net(X), y)
trainer.zero_grad()
l.backward()
trainer.step()
l = loss(net(features), labels)
print(f'epoch {epoch + 1}, loss {l:f}')
Pytorch 实现线性回归的更多相关文章
- 03_利用pytorch解决线性回归问题
03_利用pytorch解决线性回归问题 目录 一.引言 二.利用torch解决线性回归问题 2.1 定义x和y 2.2 自定制线性回归模型类 2.3 指定gpu或者cpu 2.4 设置参数 2.5 ...
- 从头学pytorch(三) 线性回归
关于什么是线性回归,不多做介绍了.可以参考我以前的博客https://www.cnblogs.com/sdu20112013/p/10186516.html 实现线性回归 分为以下几个部分: 生成数据 ...
- 【项目实战】用Pytorch实现线性回归
视频教程:https://www.bilibili.com/video/BV1Y7411d7Ys?p=5 准备数据 首先配置了环境变量,这里使用python3.9.7版本,在Anaconda下构建环境 ...
- 用Pytorch训练线性回归模型
假定我们要拟合的线性方程是:\(y=2x+1\) \(x\):[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] \(y\):[1, 3, 5, 7, ...
- 【动手学pytorch】线性回归
代码及解释 错题整理
- 神经网络架构PYTORCH-宏观分析
基本概念和功能: PyTorch是一个能够提供两种高级功能的python开发包,这两种高级功能分别是: 使用GPU做加速的矢量计算 具有自动重放功能的深度神经网络从细的粒度来分,PyTorch是一个包 ...
- pytorch从入门到放弃(目录)
目录 前置基础 Pytorch从入门到放弃 推荐阅读 前置基础 Python从入门到放弃(目录) 人工智能(目录) Pytorch从入门到放弃 01_pytorch和tensorflow的区别 02_ ...
- Task2.设立计算图并自动计算
1.numpy和pytorch实现梯度下降法 import numpy as np # N is batch size; N, D_in, H, D_out = 64, 1000, 100, 10 # ...
- 动手学习pytorch——(1)线性回归
最近参加了伯禹教育的动手学习深度学习项目,现在对第一章(线性回归)部分进行一个总结. 这里从线性回归模型之从零开始的实现和使用pytorch的简洁两个部分进行总结. 损失函数,选取平方函数来评估误差, ...
随机推荐
- HTML-置换元素
我们都知道,行内元素不能够定义宽度和高度,但 img,input,button等标签作为行内元素却可以定义宽高,为什么呢?这就牵扯到了置换元素和非置换元素. 置换元素: w3c官方解释:"A ...
- 去掉一个Vector集合中重复的元素 ?
Vector newVector = new Vector(); For (int i=0;i<vector.size();i++) { Object obj = vector.get(i); ...
- Kafka 分区数可以增加或减少吗?为什么?
我们可以使用 bin/kafka-topics.sh 命令对 Kafka 增加 Kafka 的分区数据,但是 Kafka 不支持减少分区数. Kafka 分区数据不支持减少是由很多原因的,比如减少的分 ...
- Oracle入门基础(十三)一一java调用oracle存储过程
package demo; import java.sql.CallableStatement; import java.sql.Connection; import java.sql.ResultS ...
- Error 和 Exception 有什么区别?
Error 表示系统级的错误和程序不必处理的异常,是恢复不是不可能但很困难的情 况下的一种严重问题:比如内存溢出,不可能指望程序能处理这样的情况: Exception 表示需要捕捉或者需要程序进行处理 ...
- 列举 Spring Framework 的优点?
由于 Spring Frameworks 的分层架构,用户可以自由选择自己需要的组件. Spring Framework 支持 POJO(Plain Old Java Object) 编程,从而具备持 ...
- 你能保证 GC 执行吗?
不能,虽然你可以调用 System.gc() 或者 Runtime.gc(),但是没有办法保证 GC 的执行.
- spring 中有多少种 IOC 容器?
BeanFactory - BeanFactory 就像一个包含 bean 集合的工厂类.它会在客户端 要求时实例化 bean.ApplicationContext - ApplicationCont ...
- 学习Apache(四)
介绍 Apache HTTP 服务器被设计为一个功能强大,并且灵活的 web 服务器, 可以在很多平台与环境中工作.不同平台和不同的环境往往需要不同 的特性,或可能以不同的方式实现相同的特性最有效率. ...
- 基于CrawlSpider全栈数据爬取
CrawlSpider就是爬虫类Spider的一个子类 使用流程 创建一个基于CrawlSpider的一个爬虫文件 :scrapy genspider -t crawl spider_name www ...