第\(K\)优解这类问题可在\(DP\)过程中通过添维解决。归并出当前前\(K\)大的解。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); a <= (c); ++a)
#define nR(a,b,c) for(register int a = (b); a >= (c); --a)
#define Fill(a,b) memset(a, b, sizeof(a))
#define Swap(a,b) ((a) ^= (b) ^= (a) ^= (b))
#define QWQ
#ifdef QWQ
#define D_e_Line printf("\n---------------\n")
#define D_e(x) cout << (#x) << " : " << x << "\n"
#define Pause() system("pause")
#define FileOpen() freopen("in.txt", "r", stdin)
#define FileSave() freopen("out.txt", "w", stdout)
#define TIME() fprintf(stderr, "\nTIME : %.3lfms\n", clock() * 1000.0 / CLOCKS_PER_SEC)
#else
#define D_e_Line ;
#define D_e(x) ;
#define Pause() ;
#define FileOpen() ;
#define FileSave() ;
#define TIME() ;
#endif
struct ios {
template<typename ATP> inline ios& operator >> (ATP &x) {
x = 0; int f = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
while(c >= '0' && c <='9') x = x * 10 + (c ^ '0'), c = getchar();
x *= f;
return *this;
}
}io;
using namespace std;
template<typename ATP> inline ATP Max(ATP a, ATP b) {
return a > b ? a : b;
}
template<typename ATP> inline ATP Min(ATP a, ATP b) {
return a < b ? a : b;
}
template<typename ATP> inline ATP Abs(ATP a) {
return a < 0 ? -a : a;
} const int N = 207; long long f[5007][51], tmp[5007]; struct nod {
long long cost, val;
} a[N];
int main() {
int n, K, V;
io >> K >> V >> n;
R(i,1,n){
io >> a[i].cost >> a[i].val;
} Fill(f, 0xcf);
f[0][1] = 0; R(i,1,n){
nR(j,V,a[i].cost){
int tot1 = 1, tot2 = 1, tot3 = 0;
while(tot3 <= K){
if(f[j][tot1] > f[j - a[i].cost][tot2] + a[i].val){
tmp[++tot3] = f[j][tot1++];
}
else{
tmp[++tot3] = f[j - a[i].cost][tot2++] + a[i].val;
}
}
R(k,1,K) f[j][k] = tmp[k];
}
} long long ans = 0;
R(i,1,K){
ans += f[V][i];
} printf("%lld", ans);
return 0;
}

LuoguP1858 多人背包(DP)的更多相关文章

  1. 洛谷 P1858 多人背包 DP

    目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例 输出样例 说明 思路 AC代码 题面 题目链接 洛谷 P1858 多人背包 题目描述 求01背包前k优解的价值 ...

  2. vijos P1412多人背包 DP的前k优解

    https://vijos.org/p/1412 把dp设成,dp[i][v][k]表示在前i项中,拥有v这个背包,的第k大解是什么. 那么dp[i][v][1...k]就是在dp[i - 1][v] ...

  3. P1858 多人背包

    P1858 多人背包 题目描述 求01背包前k优解的价值和 要求装满 调试日志: 初始化没有赋给 dp[0] Solution 首先补充个知识点啊, 要求装满的背包需要初始赋 \(-inf\), 边界 ...

  4. poj1417(带权并查集+背包DP+路径回溯)

    题目链接:http://poj.org/problem;jsessionid=8C1721AF1C7E94E125535692CDB6216C?id=1417 题意:有p1个天使,p2个恶魔,天使只说 ...

  5. 洛谷 P1858 多人背包 解题报告

    P1858 多人背包 题目描述 求01背包前k优解的价值和 输入输出格式 输入格式: 第一行三个数\(K\).\(V\).\(N\) 接下来每行两个数,表示体积和价值 输出格式: 前k优解的价值和 说 ...

  6. CF544 C 背包 DP

    n个人写m行代码,第i人写一行代码有a[i]个bug,问总bug数不超过b的不同方案数. 其实就是个背包,dp[i][j][k]代表前i个人写了j行代码用了k个bug限度,然后随便转移一下就好了 /* ...

  7. HDU 1011 Starship Troopers 树形+背包dp

    http://acm.hdu.edu.cn/showproblem.php?pid=1011   题意:每个节点有两个值bug和brain,当清扫该节点的所有bug时就得到brain值,只有当父节点被 ...

  8. [POJ1155]TELE(树形背包dp)

    看到这道题的第一眼我把题目看成了TLE 哦那不是重点 这道题是树形背包dp的经典例题 题目描述(大概的): 给你一棵树,每条边有一个cost,每个叶节点有一个earn 要求在earn的和大于等于cos ...

  9. [XJOI]noip43 T2多人背包

    多人背包 DD 和好朋友们要去爬山啦!他们一共有 K 个人,每个人都会背一个包.这些包的容量是相同的,都是 V.可以装进背包里的一共有 N 种物品,每种物品都有给定的体积和价值.在 DD 看来,合理的 ...

随机推荐

  1. 一文学完Linux常用命令

    一.Linux 终端命令格式 1.终端命令格式 完整版参考链接:Linux常用命令完整版 command [-options] [parameter] 说明: command : 命令名,相应功能的英 ...

  2. [CSP-S 2019 Day2]Emiya家今天的饭

    思路: 这种题目就考我们首先想到一个性质.这题其实容易想到:超限的菜最多只有一个,再加上这题有容斥那味,就枚举超限的菜然后dp就做完了. 推式子能力还是不行,要看题解. 式子还需要一个优化,就是废除冗 ...

  3. [USACO2021DEC] HILO 踩标做法

    [USACO2021DEC] HILO Solution 参考自 官方题解 里提到的一篇 Obliteration.pdf,但是里面作者写出了极多错误...然后式子还错错得对了. 令 \(y=n-x\ ...

  4. 专家PID控制仿真学习

    目录 专家控制 专家系统 专家控制 学习笔记,用于记录学习 资料:<智能控制>(第四版)--刘金琨 专家系统 一.专家系统的定义 专家系统是一类包含知识和推理的智能计算机程序,其内部包含某 ...

  5. jenkins 流水线自动化部署 手动下载安装插件包

    如果有些插件不能通过可选插件安装,可以进行选择高级并上传插件包,插件包链接地址为:http://updates.jenkins-ci.org/download/plugins/ 同时在高级中可以更换下 ...

  6. 2021.06.19【NOIP提高B组】模拟 总结

    T1 题意:有 \(n\) 个点,有 \(m\) 条边,每次加入一条到图中 问每个点的度数大于零且都是偶数的子图的个数 考试直接判断两点是否出现,出现则更新 其实只要改成并查集判断即可 原理:其实就是 ...

  7. WIN32 API 获取文件版本信息

    CString strVersion; CString strPath(_T("xxxxxxxx.exe")); // 读文件信息 DWORD dwVerHnd = 0; DWOR ...

  8. 我的第一个springboot starter

      在springboot中有很多starter,很多是官方开发的,也有是个人或开源组织开发的.这些starter是用来做什么的呐? 一.认识starter   所谓的starter,在springb ...

  9. ExtJS 布局-HBox 布局(HBox layout)

    更新记录: 2022年6月11日 更新文章结构. 2022年6月8日 发布. 2022年6月1日 开始. 1.说明 hbox布局与column布局几乎相同,但hbox允许拉伸列的高度. 既可以在水平方 ...

  10. SAP LUW 实现提交数据库更新

    CALL FUNCTION 'TRANSACTION_BEGIN' IMPORTING transaction_id = lv_transaction_id. * 更新日志表 MODIFY zfit0 ...