LuoguP1858 多人背包(DP)
第\(K\)优解这类问题可在\(DP\)过程中通过添维解决。归并出当前前\(K\)大的解。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); a <= (c); ++a)
#define nR(a,b,c) for(register int a = (b); a >= (c); --a)
#define Fill(a,b) memset(a, b, sizeof(a))
#define Swap(a,b) ((a) ^= (b) ^= (a) ^= (b))
#define QWQ
#ifdef QWQ
#define D_e_Line printf("\n---------------\n")
#define D_e(x) cout << (#x) << " : " << x << "\n"
#define Pause() system("pause")
#define FileOpen() freopen("in.txt", "r", stdin)
#define FileSave() freopen("out.txt", "w", stdout)
#define TIME() fprintf(stderr, "\nTIME : %.3lfms\n", clock() * 1000.0 / CLOCKS_PER_SEC)
#else
#define D_e_Line ;
#define D_e(x) ;
#define Pause() ;
#define FileOpen() ;
#define FileSave() ;
#define TIME() ;
#endif
struct ios {
template<typename ATP> inline ios& operator >> (ATP &x) {
x = 0; int f = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
while(c >= '0' && c <='9') x = x * 10 + (c ^ '0'), c = getchar();
x *= f;
return *this;
}
}io;
using namespace std;
template<typename ATP> inline ATP Max(ATP a, ATP b) {
return a > b ? a : b;
}
template<typename ATP> inline ATP Min(ATP a, ATP b) {
return a < b ? a : b;
}
template<typename ATP> inline ATP Abs(ATP a) {
return a < 0 ? -a : a;
}
const int N = 207;
long long f[5007][51], tmp[5007];
struct nod {
long long cost, val;
} a[N];
int main() {
int n, K, V;
io >> K >> V >> n;
R(i,1,n){
io >> a[i].cost >> a[i].val;
}
Fill(f, 0xcf);
f[0][1] = 0;
R(i,1,n){
nR(j,V,a[i].cost){
int tot1 = 1, tot2 = 1, tot3 = 0;
while(tot3 <= K){
if(f[j][tot1] > f[j - a[i].cost][tot2] + a[i].val){
tmp[++tot3] = f[j][tot1++];
}
else{
tmp[++tot3] = f[j - a[i].cost][tot2++] + a[i].val;
}
}
R(k,1,K) f[j][k] = tmp[k];
}
}
long long ans = 0;
R(i,1,K){
ans += f[V][i];
}
printf("%lld", ans);
return 0;
}

LuoguP1858 多人背包(DP)的更多相关文章
- 洛谷 P1858 多人背包 DP
目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例 输出样例 说明 思路 AC代码 题面 题目链接 洛谷 P1858 多人背包 题目描述 求01背包前k优解的价值 ...
- vijos P1412多人背包 DP的前k优解
https://vijos.org/p/1412 把dp设成,dp[i][v][k]表示在前i项中,拥有v这个背包,的第k大解是什么. 那么dp[i][v][1...k]就是在dp[i - 1][v] ...
- P1858 多人背包
P1858 多人背包 题目描述 求01背包前k优解的价值和 要求装满 调试日志: 初始化没有赋给 dp[0] Solution 首先补充个知识点啊, 要求装满的背包需要初始赋 \(-inf\), 边界 ...
- poj1417(带权并查集+背包DP+路径回溯)
题目链接:http://poj.org/problem;jsessionid=8C1721AF1C7E94E125535692CDB6216C?id=1417 题意:有p1个天使,p2个恶魔,天使只说 ...
- 洛谷 P1858 多人背包 解题报告
P1858 多人背包 题目描述 求01背包前k优解的价值和 输入输出格式 输入格式: 第一行三个数\(K\).\(V\).\(N\) 接下来每行两个数,表示体积和价值 输出格式: 前k优解的价值和 说 ...
- CF544 C 背包 DP
n个人写m行代码,第i人写一行代码有a[i]个bug,问总bug数不超过b的不同方案数. 其实就是个背包,dp[i][j][k]代表前i个人写了j行代码用了k个bug限度,然后随便转移一下就好了 /* ...
- HDU 1011 Starship Troopers 树形+背包dp
http://acm.hdu.edu.cn/showproblem.php?pid=1011 题意:每个节点有两个值bug和brain,当清扫该节点的所有bug时就得到brain值,只有当父节点被 ...
- [POJ1155]TELE(树形背包dp)
看到这道题的第一眼我把题目看成了TLE 哦那不是重点 这道题是树形背包dp的经典例题 题目描述(大概的): 给你一棵树,每条边有一个cost,每个叶节点有一个earn 要求在earn的和大于等于cos ...
- [XJOI]noip43 T2多人背包
多人背包 DD 和好朋友们要去爬山啦!他们一共有 K 个人,每个人都会背一个包.这些包的容量是相同的,都是 V.可以装进背包里的一共有 N 种物品,每种物品都有给定的体积和价值.在 DD 看来,合理的 ...
随机推荐
- ML第一周学习小结
最近的学习内容为<Python机器学习基础教程>这本书 从第一章开始,慢慢来,比较快. 一下为我的本周机器学习小结,以及下周的Flag. 本周收获 总结一下本周学习内容: 1.了解到机器学 ...
- Tarjan算法模板(USACO03FALL受欢迎的牛)
好文章 #include<bits/stdc++.h> using namespace std; const int N = 10010, M = 50010; int n, m; int ...
- 技术分享 | app自动化测试(Android)--App 控件定位
原文链接 客户端的页面通过 XML 来实现 UI 的布局,页面的 UI 布局作为一个树形结构,而树叶被定义为节点.这里的节点也就对应了要定位的元素,节点的上级节点,定义了元素的布局结构.在 XML 布 ...
- BUUCTF-ningen
ningen 从16进制看可以发现其中有压缩包,存在着504b0304,使用binwalk分离即可 压缩包带密码,根据提示是四位纯数字 使用ARCHPR破解即可
- Javaweb_Tomcat配置
1.基本概念 1.1 前言 web开发: web,网页的意思 静态web html,css 提供给所有人看的数据始终不会发生改变 动态web 淘宝,几乎所有的网站 提供给所有人看的数据始终会发生变化, ...
- 使用dockerfile部署springboot应用
本章简单展示如何最短时间 把springboot应用打包成镜像并创建成容器. 准备工作: 1.安装docker ,保证执行docker version没有问题 2.拉下来一个jdk镜像 docker ...
- 机械硬盘和ssd固态硬盘的原理对比分析
固态硬盘和机械硬盘的区别 机械硬盘 磁头是不是直接和盘片接触的呢 磁盘中有几个盘片 机械硬盘的工作原理 固态硬盘的寻址方式 SMR叠瓦式真的比PMR优秀吗 固态硬盘 主控芯片 闪存颗粒 缓存单元 固态 ...
- 如何手动解析vue单文件并预览?
开头 笔者之前的文章里介绍过一个代码在线编辑预览工具的实现(传送门:快速搭建一个代码在线编辑预览工具),实现了css.html.js的编辑,但是对于demo场景来说,vue单文件也是一个比较好的代码组 ...
- windows10 程序和功能没有Hyper-V选项
1.在电脑桌面新建Hyper-V.cmd文件,将如下代码添加到文件中 pushd "%~dp0" dir /b %SystemRoot%\servicing\Packages\*H ...
- ASP.NET Core 6 从入门到企业级实战开发应用技术汇总
系列目录 [已更新最新开发文章,点击查看详细] 本系列博客主要介绍.NET6相关技术,从基础入门.进阶提升到高级升华,最后通过一个企业级项目实战来检验技术应用能力.把个人技术与经验分享出来,抛 ...