浅谈 Lucas 定理
Lucas 定理是用来求 \(C^n_m\bmod p\) 的。
定理
\]
证明略
应用
开头不就说了是求组合数的嘛awa
因为卢卡斯定理可以把一个巨大的组合数给拆掉,所以利用这个性质就能够求出 \(C_m^n \bmod p\),也就是说:
\]
\]
可快速幂,把 \(m\) 和 \(n\) 拆成 \(p\) 进制数,然后直接暴力。
比如模板题 P3807:
#include<iostream>
using namespace std;
const int N=100010; //最大值
typedef long long ll;
ll a[N];
int p;
inline ll qpow(ll n,int k) //快速幂用来求逆元
{
ll ans=1,base=n;
while (k)
{
if(k&1) ans=ans*base%p;
base=base*base%p;k>>=1;
}
return ans%p;
}
inline ll C(ll m,ll n) //组合数,有除法用逆元
{
if (m<n) return 0;
if (m==n||!n) return 1;
if (n==1) return m;
return a[m]*qpow(a[n],p-2)%p*qpow(a[m-n],p-2)%p;
}
inline ll Lucas(ll m,ll n) //Lucas 代入公式
{
if (!n) return 1;
return C(m%p,n%p)*Lucas(m/p,n/p)%p;
}
int main()
{
int t;
cin>>t;
while (t--) //多组数据
{
ll m,n;
cin>>n>>m>>p;
a[0]=1;
for (int i=1;i<=p;i++) a[i]=(a[i-1]*i)%p; //预处理阶乘用来求组合数
cout<<Lucas(n+m,m)<<'\n';
}
return 0;
}
浅谈 Lucas 定理的更多相关文章
- 【转】.NET(C#):浅谈程序集清单资源和RESX资源 关于单元测试的思考--Asp.Net Core单元测试最佳实践 封装自己的dapper lambda扩展-设计篇 编写自己的dapper lambda扩展-使用篇 正确理解CAP定理 Quartz.NET的使用(附源码) 整理自己的.net工具库 GC的前世与今生 Visual Studio Package 插件开发之自动生
[转].NET(C#):浅谈程序集清单资源和RESX资源 目录 程序集清单资源 RESX资源文件 使用ResourceReader和ResourceSet解析二进制资源文件 使用ResourceM ...
- 重新学习MySQL数据库6:浅谈MySQL的中事务与锁
『浅入深出』MySQL 中事务的实现 在关系型数据库中,事务的重要性不言而喻,只要对数据库稍有了解的人都知道事务具有 ACID 四个基本属性,而我们不知道的可能就是数据库是如何实现这四个属性的:在这篇 ...
- 浅谈公平组合游戏IGC
浅谈公平组合游戏IGC IGC简介 一个游戏满足以下条件时被叫做IGC游戏 (前面三个字是自己YY的,不必在意) 竞争性:两名玩家交替行动. 公平性:游戏进程的任意时刻,可以执行的操作和操作者本人无关 ...
- MCMC 浅谈
# MCMC 浅谈 1. 采样(sampling)是什么 MCMC在采样算法中有着举足轻重的地位,那么什么是采样?采样就是根据某种分布生成样本.举个例子,线性同余发生器就是根据均匀分布生成样本,这就很 ...
- 浅谈 Fragment 生命周期
版权声明:本文为博主原创文章,未经博主允许不得转载. 微博:厉圣杰 源码:AndroidDemo/Fragment 文中如有纰漏,欢迎大家留言指出. Fragment 是在 Android 3.0 中 ...
- 浅谈 LayoutInflater
浅谈 LayoutInflater 版权声明:本文为博主原创文章,未经博主允许不得转载. 微博:厉圣杰 源码:AndroidDemo/View 文中如有纰漏,欢迎大家留言指出. 在 Android 的 ...
- 浅谈Java的throw与throws
转载:http://blog.csdn.net/luoweifu/article/details/10721543 我进行了一些加工,不是本人原创但比原博主要更完善~ 浅谈Java异常 以前虽然知道一 ...
- 浅谈SQL注入风险 - 一个Login拿下Server
前两天,带着学生们学习了简单的ASP.NET MVC,通过ADO.NET方式连接数据库,实现增删改查. 可能有一部分学生提前预习过,在我写登录SQL的时候,他们鄙视我说:“老师你这SQL有注入,随便都 ...
- 浅谈WebService的版本兼容性设计
在现在大型的项目或者软件开发中,一般都会有很多种终端, PC端比如Winform.WebForm,移动端,比如各种Native客户端(iOS, Android, WP),Html5等,我们要满足以上所 ...
随机推荐
- 机器学习实战-k近邻算法
写在开头,打算耐心啃完机器学习实战这本书,所用版本为2013年6月第1版 在P19页的实施kNN算法时,有很多地方不懂,遂仔细研究,记录如下: 字典按值进行排序 首先仔细读完kNN算法之后,了解其是用 ...
- Git 后续——分支与协作
Git 后续--分支与协作 本文写于 2020 年 9 月 1 日 之前一篇文章写了 Git 的基础用法,但那其实只是「单机模式」,Git 之所以在今天被如此广泛的运用,是脱不开分支系统这一概念的. ...
- 流,用声明性的方式处理数据集 - 读《Java 8实战》
引入流 Stream API的代码 声明性 更简洁,更易读 可复合 更灵活 可并行 性能更好 流是什么? 它允许以声明方式处理数据集合 遍历数据集的高级迭代器 透明地并行处理 简短定义:从支持数据处理 ...
- 给IDEA道个歉,这不是它的BUG,而是反编译插件的BUG。
你好呀,我是歪歪. 上周我不是发了<我怀疑这是IDEA的BUG,但是我翻遍全网没找到证据!>这篇文章吗. 主要描述了在 IDEA 里面反编译后的 class 文件中有这样的代码片段: 很明 ...
- Java包机制和JavaDoc
目录 包机制 JavaDoc 视频课程 包机制 包的本质就是文件夹 为了更好的组织类, Java提供了包机制, 用于区别类名的命名空间, 使项目看起来更加整洁 一般公司庸域名倒置作为包名 为了能够使用 ...
- Sublime text eslint windows 配置
1. 下载安装eslint npm install -g eslint 2. 设置环境变量 C:\Users\<你的用户名>\AppData\Roaming\npm 3. sublime ...
- Winforms选择文件夹、文件
更新记录: 2022年5月28日 初始记录 选择文件夹 if (this.folderBrowserDialog1.ShowDialog() == DialogResult.OK) { //获得用户选 ...
- 2.2 追求并发的极致-线程概论 -《zobolの操作系统学习札记》
2.2 追求并发的极致-线程概论 为了追求程序运行之间的并发性,计算机科学家们发明了进程.为了进一步的追求进程内部的并发性,工程师们又提出了线程. 正是线程的出现,给予了程序员更多地操纵OS的自由,可 ...
- 在公网服务器搭建CobaltStrike4.0
因为工作需要使用cs,正好之前腾讯云薅了一把羊毛,就把VPS装起来cs. 选的环境是centos7.6 cs运行需要java环境 先使用yum -y list java* 查看yum存在的java库 ...
- idea控制台不能输入问题
idea控制台不能输入问题 在idea中,使用JUnit测试时,不能在控制台输入,进行下面的设置即可 第一步 :help---> Edit Custom VM Options... 第二步:添加 ...