Time Series Analysis

Best MSE (Mean Square Error) Predictor

对于所有可能的预测函数 \(f(X_{n})\),找到一个使 \(\mathbb{E}\big[\big(X_{n} - f(X_{n})\big)^{2} \big]\) 最小的 \(f\) 的 predictor。这样的 predictor 假设记为 \(m(X_{n})\), 称作 best MSE predictor,i.e.,

\[m(X_{n}) = \mathop{\arg\min}\limits_{f} \mathbb{E}\big[ \big( X_{n+h} - f(X_{n}) \big)^{2} \big]
\]

我们知道:\(\mathop{\arg\min}\limits_{f} \mathbb{E}\big[ \big( X_{n+h} - f(X_{n}) \big)^{2} \big]\) 的解即为:

\[\mathbb{E}\big[ X_{n+h} ~ \big| ~ X_{n} \big]
\]

证明:

基于 \(X_{n}\) 求 \(\mathbb{E}\big[ \big( X_{n+h} - f(X_{n}) \big)^{2} \big]\) 的最小值,实际上:

\[\mathop{\arg\min}\limits_{f} \mathbb{E}\big[ \big( X_{n+h} - f(X_{n}) \big)^{2} \big] \iff \mathop{\arg\min}\limits_{f} \mathbb{E}\big[ \big( X_{n+h} - f(X_{n}) \big)^{2} ~ \big| ~ X_{n} \big]
\]

  • 私以为更严谨的写法是 \(\mathop{\text{argmin}}\limits_{f} ~ \mathbb{E}\Big[\Big(X_{n+h} - f\big( X_{n}\big)\Big)^{2} ~ | ~ \mathcal{F}_{n}\Big]\),其中 \(\left\{ \mathcal{F}_{t}\right\}_{t\geq 0}\) 为 \(\left\{ X_{t} \right\}_{t\geq 0}\) 相关的 natural filtration,but whatever。

等式右侧之部分:

\[\begin{align*}
\mathbb{E}\big[ \big( X_{n+h} - f(X_{n}) \big)^{2} ~ \big| ~ X_{n} \big] & = \mathbb{E}[X_{n+h}^{2} ~ | ~ X_{n}] - 2f(X_{n})\mathbb{E}[X_{n+h} ~ | ~ X_{n}] + f^{2}(X_{n}) \\
\end{align*}
\]

其中由于:

\[\begin{align*}
Var(X_{n+h} ~ | ~ X_{n}) & = \mathbb{E}\Big[ \big( X_{n+h} - \mathbb{E}\big[ X_{n+h}^{2} ~ | ~ X_{n} \big] \big)^{2} ~ \Big| ~ X_{n} \Big] \\
& = \mathbb{E}\big[ X_{n+h}^{2} ~ \big| ~ X_{n} \big] - 2\mathbb{E}^{2}\big[ X_{n+h}^{2} ~ \big| ~ X_{n} \big] + \mathbb{E}^{2}\big[ X_{n+h}^{2} ~ \big| ~ X_{n} \big] \\
& = \mathbb{E}\big[ X_{n+h}^{2} ~ \big| ~ X_{n} \big] - \mathbb{E}^{2}\big[ X_{n+h}^{2} ~ \big| ~ X_{n} \big]
\end{align*}
\]

which gives that:

\[\implies Var(X_{n+h} ~ | ~ X_{n}) = \mathbb{E}\big[ X_{n+h}^{2} ~ \big| ~ X_{n} \big] - \mathbb{E}^{2}\big[ X_{n+h} ~ \big| ~ X_{n} \big]
\]

因此,

\[\begin{align*}
\mathbb{E}\big[ \big( X_{n+h} - f(X_{n}) \big)^{2} ~ \big| ~ X_{n} \big] & = Var(X_{n+h} ~ | ~ X_{n}) + \mathbb{E}^{2}\big[ X_{n+h} ~ \big| ~ X_{n}\big] - 2f(X_{n})\mathbb{E}[X_{n+h} ~ | ~ X_{n}] + f^{2}(X_{n}) \\
& = Var(X_{n+h} ~ | ~ X_{n}) + \Big( \mathbb{E}\big[ X_{n+h} ~ \big| ~ X_{n}\big] - f(X_{n}) \Big)^{2}
\end{align*}
\]

方差 \(Var(X_{n+h} ~ | ~ X_{n})\) 为定值,那么 optimal solution \(m(X_{n})\) 显而易见:

\[m(X_{n}) = \mathbb{E}\big[ X_{n+h} ~ \big| ~ X_{n} \big]
\]

此时 \(\left\{ X_{t} \right\}\) 为一个 Stationary Gaussian Time Series, i.e.,

\[\begin{pmatrix}
X_{n+h}\\
X_{n}
\end{pmatrix} \sim N \begin{pmatrix}
\begin{pmatrix}
\mu \\
\mu
\end{pmatrix}, ~ \begin{pmatrix}
\gamma(0) & \gamma(h) \\
\gamma(h) & \gamma(0)
\end{pmatrix}
\end{pmatrix}
\]

那么我们有:

\[X_{n+h} ~ | ~ X_{n} \sim N\Big( \mu + \rho(h)\big(X_{n} - \mu\big), ~ \gamma(0)\big(1 - \rho^{2}(h)\big) \Big)
\]

其中 \(\rho(h)\) 为 \(\left\{ X_{t} \right\}\) 的 ACF,因此,

\[\mathbb{E}\big[ X_{n+h} ~ \big| ~ X_{n} \big] = m(X_{n}) = \mu + \rho(h) \big( X_{n} - \mu \big)
\]

注意:

若 \(\left\{ X_{t} \right\}\) 是一个 Gaussian time series,则一定能计算 best MSE predictor。而若 \(\left\{ X_{t} \right\}\) 并非 Gaussian time series,则计算通常十分复杂。

因此,我们通常不找 best MSE predictor,而寻找 best linear predictor。


Best Linear Predictor (BLP)

在 BLP 假设下,我们寻找一个形如 \(f(X_{n}) \propto aX_{n} + b\) 的 predictor。

则目标为:

\[\text{minimize: } ~ S(a,b) = \mathbb{E} \big[ \big( X_{n+h} - aX_{n} -b \big)^{2} \big]
\]

推导:

分别对 \(a, b\) 求偏微分:

\[\begin{align*}
\frac{\partial}{\partial b} S(a, b) & = \frac{\partial}{\partial b} \mathbb{E} \big[ \big( X_{n+h} - aX_{n} -b \big)^{2} \big] \\
& = -2 \mathbb{E} \big[ X_{n+h} - aX_{n} - b \big] \\
\end{align*}
\]

令:

\[\frac{\partial}{\partial b} S(a, b) = 0
\]

则:

\[\begin{align*}
-2 \cdot & \mathbb{E} \big[ X_{n+h} - aX_{n} - b \big] = 0 \\
\implies & \qquad \mathbb{E}[X_{n+h}] - a\mathbb{E}[X_{n}] - b = 0\\
\implies & \qquad \mu - a\mu - b = 0 \\
\implies & \qquad b^{\star} = (1 - a^{\star}) \mu
\end{align*}
\]

回代并 take partial derivative on \(a\):

\[\begin{align*}
\frac{\partial}{\partial a} S(a, b) & = \frac{\partial}{\partial a} \mathbb{E} \big[ \big( X_{n+h} - aX_{n} - (1 - a)\mu \big)^{2} \big] \\
& = \frac{\partial}{\partial a} \mathbb{E} \Big[ \Big( \big(X_{n+h} - \mu \big) - \big( X_{n} - \mu \big) a \Big)^{2} \Big] \\
& = \mathbb{E} \Big[ - \big( X_{n} - \mu \big) \Big( \big(X_{n+h} - \mu \big) - \big( X_{n} - \mu \big) a \Big)\Big] \\
\end{align*}
\]

令:

\[\frac{\partial}{\partial a} S(a, b) = 0
\]

则:

\[\begin{align*}
& \mathbb{E} \Big[ - \big( X_{n} - \mu \big) \Big( \big(X_{n+h} - \mu \big) - \big( X_{n} - \mu \big) a \Big)\Big] = 0 \\
\implies & \qquad \mathbb{E} \Big[\big( X_{n} - \mu \big) \Big( \big(X_{n+h} - \mu \big) - \big( X_{n} - \mu \big) a \Big)\Big] = 0 \\
\implies & \qquad \mathbb{E} \Big[\big( X_{n} - \mu \big) \big(X_{n+h} - \mu \big) - a \big( X_{n} - \mu \big) \big( X_{n} - \mu \big) \Big] = 0 \\
\implies & \qquad \mathbb{E} \Big[\big( X_{n} - \mu \big) \big(X_{n+h} - \mu \big) \Big] = a \cdot \mathbb{E} \Big[\big( X_{n} - \mu \big) \big( X_{n} - \mu \big) \Big] \\
\implies & \qquad \mathbb{E} \Big[\big( X_{n} - \mathbb{E}[X_{n}] \big) \big(X_{n+h} - \mathbb{E}[X_{n+h}] \big) \Big] = a \cdot \mathbb{E} \Big[\big( X_{n} - \mathbb{E}[X_{n}] \big)^{2} \Big] \\
\implies & \qquad \text{Cov}(X_{n}, X_{n+h}) = a \cdot \text{Var}(X_{n}) \\
\implies & \qquad a^{\star} = \frac{\gamma(h)}{\gamma(0)} = \rho(h)
\end{align*}
\]

综上,time series \(\left\{ X_{n} \right\}\) 的 BLP 为:

\[f(X_{n}) = l(X_{n}) = \mu + \rho(h) \big( X_{n} - \mu \big)
\]

且 BLP 相关的 MSE 为:

\[\begin{align*}
\text{MSE} & = \mathbb{E}\big[ \big( X_{n+h} - l(X_{n}) \big)^{2} \big] \\
& = \mathbb{E} \Big[ \Big( X_{n+h} - \mu - \rho(h) \big( X_{n} - \mu \big) \Big)^{2} \Big] \\
& = \rho(0) \cdot \big( 1 - \rho^{2}(h) \big)
\end{align*}
\]

Time Series Analysis (Best MSE Predictor & Best Linear Predictor)的更多相关文章

  1. PP: Multilevel wavelet decomposition network for interpretable time series analysis

    Problem: the important frequency information is lack of effective modelling. ?? what is frequency in ...

  2. A New Recurrence-Network-Based Time Series Analysis Approach for Characterizing System Dynamics - Guangyu Yang, Daolin Xu * and Haicheng Zhang

    Purpose: characterize the evolution of dynamical systems. In this paper, a novel method based on eps ...

  3. survey on Time Series Analysis Lib

    (1)I spent my 4th year Computing project on implementing time series forecasting for Java heap usage ...

  4. time series analysis

    1 总体介绍 在以下主题中,我们将回顾有助于分析时间序列数据的技术,即遵循非随机顺序的测量序列.与在大多数其他统计数据的上下文中讨论的随机观测样本的分析不同,时间序列的分析基于数据文件中的连续值表示以 ...

  5. predict.glm -> which class does it predict?

    Jul 10, 2009; 10:46pm predict.glm -> which class does it predict? 2 posts Hi, I have a question a ...

  6. Visibility Graph Analysis of Geophysical Time Series: Potentials and Possible Pitfalls

    Tasks: invest papers  3 篇. 研究主动权在我手里.  I have to.  1. the benefit of complex network: complex networ ...

  7. Regression analysis

    Source: http://wenku.baidu.com/link?url=9KrZhWmkIDHrqNHiXCGfkJVQWGFKOzaeiB7SslSdW_JnXCkVHsHsXJyvGbDv ...

  8. Bayesian generalized linear model (GLM) | 贝叶斯广义线性回归实例

    一些问题: 1. 什么时候我的问题可以用GLM,什么时候我的问题不能用GLM? 2. GLM到底能给我们带来什么好处? 3. 如何评价GLM模型的好坏? 广义线性回归啊,虐了我快几个月了,还是没有彻底 ...

  9. Time Series data 与 sequential data 的区别

    It is important to note the distinction between time series and sequential data. In both cases, the ...

  10. 7、RNAseq Downstream Analysis

    Created by Dennis C Wylie, last modified on Jun 29, 2015 Machine learning methods (including cluster ...

随机推荐

  1. 图机器学习(GML)&图神经网络(GNN)原理和代码实现(前置学习系列二)

    项目链接:https://aistudio.baidu.com/aistudio/projectdetail/4990947?contributionType=1 欢迎fork欢迎三连!文章篇幅有限, ...

  2. 抠网页标题栏logo(图标)

    1.打开自己需要抠的网页,例如百度页面 2.在这个网页链接后面+" /favicon.ico " 就可以提取ico图片 3.回车进去,右键鼠标,选择另存为图片就可以成功保存网页中的 ...

  3. 2022春每日一题:Day 25

    题目:青蛙的约会 读完题,显然可以的到下同余方程:x+mk≡y+nk (mod L) 移项变成 (m-n)k+aL=y-x 只有k,L是未知的,而这题要求非负整数k的最小值,显然拓展欧几里得算法. 然 ...

  4. 线程(Thread)基本用法

    一.线程的调用 1.无参 def run_01(): for i in range(6, 10): print("test01", i) time.sleep(1) th_01 = ...

  5. Training: MySQL I

    原题链接:http://www.wechall.net/challenge/training/mysql/auth_bypass1/index.php 题目告诉我们这是一个经典的mysql注入挑战,我 ...

  6. Vue使用Element表单校验错误Cannot read property ‘validate’ of undefined

    在做注册用户的页面使用表单校验一直提示Cannot read property 'validate' of undefined错误,其实这个错误的提示根据有多种情况,比较常见的就是 ref 的名字不一 ...

  7. docker入门(利用docker部署web应用)

    第一章 什么是docker1.1 docker的发展史2010年几个年轻人成立了一个做PAAS平台的公司dotCloud.起初公司发展的不错,不但拿到过一些融资,还获得了美国著名孵化器YCombina ...

  8. 深入浅出OSI七层参考

    本篇博客是笔者阅读<图解TCP/IP>所记录下的笔记,有兴趣的朋友可以去看一看这本书. OSI七层参考模型 ​ 本小节以电子邮件通信为例,分别来阐述OSI七层模型的每一层是如果进行通信处理 ...

  9. java中的数值运算

    本文主要是掌握java中的整除和取模的运算: public class MathOperate { public static void main(String[] args) { // 取整运算 S ...

  10. 使用Typora写博客,图片即时上传

    背景 习惯使用markdown的人应该都知道Typora这个神器,它非常简洁高效.虽然博客园的在线markdown编辑器也不错,但毕竟是网页版,每次写东西需要登录系统-进后台-找到文章-编辑-保存草稿 ...