Time Series Analysis

Best MSE (Mean Square Error) Predictor

对于所有可能的预测函数 \(f(X_{n})\),找到一个使 \(\mathbb{E}\big[\big(X_{n} - f(X_{n})\big)^{2} \big]\) 最小的 \(f\) 的 predictor。这样的 predictor 假设记为 \(m(X_{n})\), 称作 best MSE predictor,i.e.,

\[m(X_{n}) = \mathop{\arg\min}\limits_{f} \mathbb{E}\big[ \big( X_{n+h} - f(X_{n}) \big)^{2} \big]
\]

我们知道:\(\mathop{\arg\min}\limits_{f} \mathbb{E}\big[ \big( X_{n+h} - f(X_{n}) \big)^{2} \big]\) 的解即为:

\[\mathbb{E}\big[ X_{n+h} ~ \big| ~ X_{n} \big]
\]

证明:

基于 \(X_{n}\) 求 \(\mathbb{E}\big[ \big( X_{n+h} - f(X_{n}) \big)^{2} \big]\) 的最小值,实际上:

\[\mathop{\arg\min}\limits_{f} \mathbb{E}\big[ \big( X_{n+h} - f(X_{n}) \big)^{2} \big] \iff \mathop{\arg\min}\limits_{f} \mathbb{E}\big[ \big( X_{n+h} - f(X_{n}) \big)^{2} ~ \big| ~ X_{n} \big]
\]

  • 私以为更严谨的写法是 \(\mathop{\text{argmin}}\limits_{f} ~ \mathbb{E}\Big[\Big(X_{n+h} - f\big( X_{n}\big)\Big)^{2} ~ | ~ \mathcal{F}_{n}\Big]\),其中 \(\left\{ \mathcal{F}_{t}\right\}_{t\geq 0}\) 为 \(\left\{ X_{t} \right\}_{t\geq 0}\) 相关的 natural filtration,but whatever。

等式右侧之部分:

\[\begin{align*}
\mathbb{E}\big[ \big( X_{n+h} - f(X_{n}) \big)^{2} ~ \big| ~ X_{n} \big] & = \mathbb{E}[X_{n+h}^{2} ~ | ~ X_{n}] - 2f(X_{n})\mathbb{E}[X_{n+h} ~ | ~ X_{n}] + f^{2}(X_{n}) \\
\end{align*}
\]

其中由于:

\[\begin{align*}
Var(X_{n+h} ~ | ~ X_{n}) & = \mathbb{E}\Big[ \big( X_{n+h} - \mathbb{E}\big[ X_{n+h}^{2} ~ | ~ X_{n} \big] \big)^{2} ~ \Big| ~ X_{n} \Big] \\
& = \mathbb{E}\big[ X_{n+h}^{2} ~ \big| ~ X_{n} \big] - 2\mathbb{E}^{2}\big[ X_{n+h}^{2} ~ \big| ~ X_{n} \big] + \mathbb{E}^{2}\big[ X_{n+h}^{2} ~ \big| ~ X_{n} \big] \\
& = \mathbb{E}\big[ X_{n+h}^{2} ~ \big| ~ X_{n} \big] - \mathbb{E}^{2}\big[ X_{n+h}^{2} ~ \big| ~ X_{n} \big]
\end{align*}
\]

which gives that:

\[\implies Var(X_{n+h} ~ | ~ X_{n}) = \mathbb{E}\big[ X_{n+h}^{2} ~ \big| ~ X_{n} \big] - \mathbb{E}^{2}\big[ X_{n+h} ~ \big| ~ X_{n} \big]
\]

因此,

\[\begin{align*}
\mathbb{E}\big[ \big( X_{n+h} - f(X_{n}) \big)^{2} ~ \big| ~ X_{n} \big] & = Var(X_{n+h} ~ | ~ X_{n}) + \mathbb{E}^{2}\big[ X_{n+h} ~ \big| ~ X_{n}\big] - 2f(X_{n})\mathbb{E}[X_{n+h} ~ | ~ X_{n}] + f^{2}(X_{n}) \\
& = Var(X_{n+h} ~ | ~ X_{n}) + \Big( \mathbb{E}\big[ X_{n+h} ~ \big| ~ X_{n}\big] - f(X_{n}) \Big)^{2}
\end{align*}
\]

方差 \(Var(X_{n+h} ~ | ~ X_{n})\) 为定值,那么 optimal solution \(m(X_{n})\) 显而易见:

\[m(X_{n}) = \mathbb{E}\big[ X_{n+h} ~ \big| ~ X_{n} \big]
\]

此时 \(\left\{ X_{t} \right\}\) 为一个 Stationary Gaussian Time Series, i.e.,

\[\begin{pmatrix}
X_{n+h}\\
X_{n}
\end{pmatrix} \sim N \begin{pmatrix}
\begin{pmatrix}
\mu \\
\mu
\end{pmatrix}, ~ \begin{pmatrix}
\gamma(0) & \gamma(h) \\
\gamma(h) & \gamma(0)
\end{pmatrix}
\end{pmatrix}
\]

那么我们有:

\[X_{n+h} ~ | ~ X_{n} \sim N\Big( \mu + \rho(h)\big(X_{n} - \mu\big), ~ \gamma(0)\big(1 - \rho^{2}(h)\big) \Big)
\]

其中 \(\rho(h)\) 为 \(\left\{ X_{t} \right\}\) 的 ACF,因此,

\[\mathbb{E}\big[ X_{n+h} ~ \big| ~ X_{n} \big] = m(X_{n}) = \mu + \rho(h) \big( X_{n} - \mu \big)
\]

注意:

若 \(\left\{ X_{t} \right\}\) 是一个 Gaussian time series,则一定能计算 best MSE predictor。而若 \(\left\{ X_{t} \right\}\) 并非 Gaussian time series,则计算通常十分复杂。

因此,我们通常不找 best MSE predictor,而寻找 best linear predictor。


Best Linear Predictor (BLP)

在 BLP 假设下,我们寻找一个形如 \(f(X_{n}) \propto aX_{n} + b\) 的 predictor。

则目标为:

\[\text{minimize: } ~ S(a,b) = \mathbb{E} \big[ \big( X_{n+h} - aX_{n} -b \big)^{2} \big]
\]

推导:

分别对 \(a, b\) 求偏微分:

\[\begin{align*}
\frac{\partial}{\partial b} S(a, b) & = \frac{\partial}{\partial b} \mathbb{E} \big[ \big( X_{n+h} - aX_{n} -b \big)^{2} \big] \\
& = -2 \mathbb{E} \big[ X_{n+h} - aX_{n} - b \big] \\
\end{align*}
\]

令:

\[\frac{\partial}{\partial b} S(a, b) = 0
\]

则:

\[\begin{align*}
-2 \cdot & \mathbb{E} \big[ X_{n+h} - aX_{n} - b \big] = 0 \\
\implies & \qquad \mathbb{E}[X_{n+h}] - a\mathbb{E}[X_{n}] - b = 0\\
\implies & \qquad \mu - a\mu - b = 0 \\
\implies & \qquad b^{\star} = (1 - a^{\star}) \mu
\end{align*}
\]

回代并 take partial derivative on \(a\):

\[\begin{align*}
\frac{\partial}{\partial a} S(a, b) & = \frac{\partial}{\partial a} \mathbb{E} \big[ \big( X_{n+h} - aX_{n} - (1 - a)\mu \big)^{2} \big] \\
& = \frac{\partial}{\partial a} \mathbb{E} \Big[ \Big( \big(X_{n+h} - \mu \big) - \big( X_{n} - \mu \big) a \Big)^{2} \Big] \\
& = \mathbb{E} \Big[ - \big( X_{n} - \mu \big) \Big( \big(X_{n+h} - \mu \big) - \big( X_{n} - \mu \big) a \Big)\Big] \\
\end{align*}
\]

令:

\[\frac{\partial}{\partial a} S(a, b) = 0
\]

则:

\[\begin{align*}
& \mathbb{E} \Big[ - \big( X_{n} - \mu \big) \Big( \big(X_{n+h} - \mu \big) - \big( X_{n} - \mu \big) a \Big)\Big] = 0 \\
\implies & \qquad \mathbb{E} \Big[\big( X_{n} - \mu \big) \Big( \big(X_{n+h} - \mu \big) - \big( X_{n} - \mu \big) a \Big)\Big] = 0 \\
\implies & \qquad \mathbb{E} \Big[\big( X_{n} - \mu \big) \big(X_{n+h} - \mu \big) - a \big( X_{n} - \mu \big) \big( X_{n} - \mu \big) \Big] = 0 \\
\implies & \qquad \mathbb{E} \Big[\big( X_{n} - \mu \big) \big(X_{n+h} - \mu \big) \Big] = a \cdot \mathbb{E} \Big[\big( X_{n} - \mu \big) \big( X_{n} - \mu \big) \Big] \\
\implies & \qquad \mathbb{E} \Big[\big( X_{n} - \mathbb{E}[X_{n}] \big) \big(X_{n+h} - \mathbb{E}[X_{n+h}] \big) \Big] = a \cdot \mathbb{E} \Big[\big( X_{n} - \mathbb{E}[X_{n}] \big)^{2} \Big] \\
\implies & \qquad \text{Cov}(X_{n}, X_{n+h}) = a \cdot \text{Var}(X_{n}) \\
\implies & \qquad a^{\star} = \frac{\gamma(h)}{\gamma(0)} = \rho(h)
\end{align*}
\]

综上,time series \(\left\{ X_{n} \right\}\) 的 BLP 为:

\[f(X_{n}) = l(X_{n}) = \mu + \rho(h) \big( X_{n} - \mu \big)
\]

且 BLP 相关的 MSE 为:

\[\begin{align*}
\text{MSE} & = \mathbb{E}\big[ \big( X_{n+h} - l(X_{n}) \big)^{2} \big] \\
& = \mathbb{E} \Big[ \Big( X_{n+h} - \mu - \rho(h) \big( X_{n} - \mu \big) \Big)^{2} \Big] \\
& = \rho(0) \cdot \big( 1 - \rho^{2}(h) \big)
\end{align*}
\]

Time Series Analysis (Best MSE Predictor & Best Linear Predictor)的更多相关文章

  1. PP: Multilevel wavelet decomposition network for interpretable time series analysis

    Problem: the important frequency information is lack of effective modelling. ?? what is frequency in ...

  2. A New Recurrence-Network-Based Time Series Analysis Approach for Characterizing System Dynamics - Guangyu Yang, Daolin Xu * and Haicheng Zhang

    Purpose: characterize the evolution of dynamical systems. In this paper, a novel method based on eps ...

  3. survey on Time Series Analysis Lib

    (1)I spent my 4th year Computing project on implementing time series forecasting for Java heap usage ...

  4. time series analysis

    1 总体介绍 在以下主题中,我们将回顾有助于分析时间序列数据的技术,即遵循非随机顺序的测量序列.与在大多数其他统计数据的上下文中讨论的随机观测样本的分析不同,时间序列的分析基于数据文件中的连续值表示以 ...

  5. predict.glm -> which class does it predict?

    Jul 10, 2009; 10:46pm predict.glm -> which class does it predict? 2 posts Hi, I have a question a ...

  6. Visibility Graph Analysis of Geophysical Time Series: Potentials and Possible Pitfalls

    Tasks: invest papers  3 篇. 研究主动权在我手里.  I have to.  1. the benefit of complex network: complex networ ...

  7. Regression analysis

    Source: http://wenku.baidu.com/link?url=9KrZhWmkIDHrqNHiXCGfkJVQWGFKOzaeiB7SslSdW_JnXCkVHsHsXJyvGbDv ...

  8. Bayesian generalized linear model (GLM) | 贝叶斯广义线性回归实例

    一些问题: 1. 什么时候我的问题可以用GLM,什么时候我的问题不能用GLM? 2. GLM到底能给我们带来什么好处? 3. 如何评价GLM模型的好坏? 广义线性回归啊,虐了我快几个月了,还是没有彻底 ...

  9. Time Series data 与 sequential data 的区别

    It is important to note the distinction between time series and sequential data. In both cases, the ...

  10. 7、RNAseq Downstream Analysis

    Created by Dennis C Wylie, last modified on Jun 29, 2015 Machine learning methods (including cluster ...

随机推荐

  1. 执行xxx.sh脚本的两种方式

    因公司测试环境的登录模式有2种,大佬们直接写了个脚本完成一键切换,看了其中的脚本文件,其中出现了send "sh out.sh\r":一直疑惑这里的sh out.sh的意思...查 ...

  2. Java注解和反射笔记

    Java注解和反射笔记 1 注解 1.1 定义 Annotation是从JDK1.5开始引入的技术 作用 不是程序本身,可以对程序作出解释 可以被其他程序(编译器等)读取 格式 @注释名,可以添加一些 ...

  3. Microsoft Office MSDT代码执行漏洞(CVE-2022-30190)漏洞复现

    目录 免责声明: CVE-2022-30190漏洞复现 漏洞概述: 影响版本: 漏洞复现: 使用方法: 利用: 修复建议: 参考: 免责声明: 本文章仅供学习和研究使用,严禁使用该文章内容对互联网其他 ...

  4. .NET实现堆排序

    堆排序及相关知识 堆排序 堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序.首先简单了解下堆结构. 堆 堆是具 ...

  5. 两行CSS让页面提升了近7倍渲染性能!

    前言 对于前端人员来讲,最令人头疼的应该就是页面性能了,当用户在访问一个页面时,总是希望它能够快速呈现在眼前并且是可交互状态.如果页面加载过慢,你的用户很可能会因此离你而去.所以页面性能对于前端开发者 ...

  6. jQuery 十三中选择器总结

    <body style="overflow: scroll;"> <h1>我的测试</h1> <div id="111" ...

  7. easui datagrid 行获取后台sql所有数据:支持行chockbox多选,输出选中行任意属性;支持点击表中属性实现跳转;支持分页。

    easyUI datagrid 代码: <table id="tabgrid20170726191838251403" class="easyui-datagrid ...

  8. Android 内存缓存框架 LruCache 的实现原理,手写试试?

    本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问. 前言 大家好,我是小彭. 在之前的文章里,我们聊到了 LRU 缓存淘汰算法,并且分析 Java 标准库中支持 ...

  9. SpringMVC01:入门、请求参数绑定、自定义类型转换器、常见注解

    一.介绍--三层架构和MVC 1.三层架构介绍和MVC设计模型介绍 开发架构一般都是基于两种形式,一种是 C/S 架构,也就是客户端/服务器,另一种是 B/S 架构,也就是浏览器/服务器.在 Java ...

  10. 【Shell案例】【for循环、seq生成】3、输出7的倍数

    描述写一个 bash脚本以输出数字 0 到 500 中 7 的倍数(0 7 14 21...)的命令 方法1:in方式循环 [if的括号是中括号,中间的条件要有空格] [循环体用do和done配对] ...