Time Series Analysis (Best MSE Predictor & Best Linear Predictor)
Time Series Analysis
Best MSE (Mean Square Error) Predictor
对于所有可能的预测函数 \(f(X_{n})\),找到一个使 \(\mathbb{E}\big[\big(X_{n} - f(X_{n})\big)^{2} \big]\) 最小的 \(f\) 的 predictor。这样的 predictor 假设记为 \(m(X_{n})\), 称作 best MSE predictor,i.e.,
\]
我们知道:\(\mathop{\arg\min}\limits_{f} \mathbb{E}\big[ \big( X_{n+h} - f(X_{n}) \big)^{2} \big]\) 的解即为:
\]
证明:
基于 \(X_{n}\) 求 \(\mathbb{E}\big[ \big( X_{n+h} - f(X_{n}) \big)^{2} \big]\) 的最小值,实际上:
\]
- 私以为更严谨的写法是 \(\mathop{\text{argmin}}\limits_{f} ~ \mathbb{E}\Big[\Big(X_{n+h} - f\big( X_{n}\big)\Big)^{2} ~ | ~ \mathcal{F}_{n}\Big]\),其中 \(\left\{ \mathcal{F}_{t}\right\}_{t\geq 0}\) 为 \(\left\{ X_{t} \right\}_{t\geq 0}\) 相关的 natural filtration,but whatever。
等式右侧之部分:
\mathbb{E}\big[ \big( X_{n+h} - f(X_{n}) \big)^{2} ~ \big| ~ X_{n} \big] & = \mathbb{E}[X_{n+h}^{2} ~ | ~ X_{n}] - 2f(X_{n})\mathbb{E}[X_{n+h} ~ | ~ X_{n}] + f^{2}(X_{n}) \\
\end{align*}
\]
其中由于:
Var(X_{n+h} ~ | ~ X_{n}) & = \mathbb{E}\Big[ \big( X_{n+h} - \mathbb{E}\big[ X_{n+h}^{2} ~ | ~ X_{n} \big] \big)^{2} ~ \Big| ~ X_{n} \Big] \\
& = \mathbb{E}\big[ X_{n+h}^{2} ~ \big| ~ X_{n} \big] - 2\mathbb{E}^{2}\big[ X_{n+h}^{2} ~ \big| ~ X_{n} \big] + \mathbb{E}^{2}\big[ X_{n+h}^{2} ~ \big| ~ X_{n} \big] \\
& = \mathbb{E}\big[ X_{n+h}^{2} ~ \big| ~ X_{n} \big] - \mathbb{E}^{2}\big[ X_{n+h}^{2} ~ \big| ~ X_{n} \big]
\end{align*}
\]
which gives that:
\]
因此,
\mathbb{E}\big[ \big( X_{n+h} - f(X_{n}) \big)^{2} ~ \big| ~ X_{n} \big] & = Var(X_{n+h} ~ | ~ X_{n}) + \mathbb{E}^{2}\big[ X_{n+h} ~ \big| ~ X_{n}\big] - 2f(X_{n})\mathbb{E}[X_{n+h} ~ | ~ X_{n}] + f^{2}(X_{n}) \\
& = Var(X_{n+h} ~ | ~ X_{n}) + \Big( \mathbb{E}\big[ X_{n+h} ~ \big| ~ X_{n}\big] - f(X_{n}) \Big)^{2}
\end{align*}
\]
方差 \(Var(X_{n+h} ~ | ~ X_{n})\) 为定值,那么 optimal solution \(m(X_{n})\) 显而易见:
\]
此时 \(\left\{ X_{t} \right\}\) 为一个 Stationary Gaussian Time Series, i.e.,
X_{n+h}\\
X_{n}
\end{pmatrix} \sim N \begin{pmatrix}
\begin{pmatrix}
\mu \\
\mu
\end{pmatrix}, ~ \begin{pmatrix}
\gamma(0) & \gamma(h) \\
\gamma(h) & \gamma(0)
\end{pmatrix}
\end{pmatrix}
\]
那么我们有:
\]
其中 \(\rho(h)\) 为 \(\left\{ X_{t} \right\}\) 的 ACF,因此,
\]
注意:
若 \(\left\{ X_{t} \right\}\) 是一个 Gaussian time series,则一定能计算 best MSE predictor。而若 \(\left\{ X_{t} \right\}\) 并非 Gaussian time series,则计算通常十分复杂。
因此,我们通常不找 best MSE predictor,而寻找 best linear predictor。
Best Linear Predictor (BLP)
在 BLP 假设下,我们寻找一个形如 \(f(X_{n}) \propto aX_{n} + b\) 的 predictor。
则目标为:
\]
推导:
分别对 \(a, b\) 求偏微分:
\frac{\partial}{\partial b} S(a, b) & = \frac{\partial}{\partial b} \mathbb{E} \big[ \big( X_{n+h} - aX_{n} -b \big)^{2} \big] \\
& = -2 \mathbb{E} \big[ X_{n+h} - aX_{n} - b \big] \\
\end{align*}
\]
令:
\]
则:
-2 \cdot & \mathbb{E} \big[ X_{n+h} - aX_{n} - b \big] = 0 \\
\implies & \qquad \mathbb{E}[X_{n+h}] - a\mathbb{E}[X_{n}] - b = 0\\
\implies & \qquad \mu - a\mu - b = 0 \\
\implies & \qquad b^{\star} = (1 - a^{\star}) \mu
\end{align*}
\]
回代并 take partial derivative on \(a\):
\frac{\partial}{\partial a} S(a, b) & = \frac{\partial}{\partial a} \mathbb{E} \big[ \big( X_{n+h} - aX_{n} - (1 - a)\mu \big)^{2} \big] \\
& = \frac{\partial}{\partial a} \mathbb{E} \Big[ \Big( \big(X_{n+h} - \mu \big) - \big( X_{n} - \mu \big) a \Big)^{2} \Big] \\
& = \mathbb{E} \Big[ - \big( X_{n} - \mu \big) \Big( \big(X_{n+h} - \mu \big) - \big( X_{n} - \mu \big) a \Big)\Big] \\
\end{align*}
\]
令:
\]
则:
& \mathbb{E} \Big[ - \big( X_{n} - \mu \big) \Big( \big(X_{n+h} - \mu \big) - \big( X_{n} - \mu \big) a \Big)\Big] = 0 \\
\implies & \qquad \mathbb{E} \Big[\big( X_{n} - \mu \big) \Big( \big(X_{n+h} - \mu \big) - \big( X_{n} - \mu \big) a \Big)\Big] = 0 \\
\implies & \qquad \mathbb{E} \Big[\big( X_{n} - \mu \big) \big(X_{n+h} - \mu \big) - a \big( X_{n} - \mu \big) \big( X_{n} - \mu \big) \Big] = 0 \\
\implies & \qquad \mathbb{E} \Big[\big( X_{n} - \mu \big) \big(X_{n+h} - \mu \big) \Big] = a \cdot \mathbb{E} \Big[\big( X_{n} - \mu \big) \big( X_{n} - \mu \big) \Big] \\
\implies & \qquad \mathbb{E} \Big[\big( X_{n} - \mathbb{E}[X_{n}] \big) \big(X_{n+h} - \mathbb{E}[X_{n+h}] \big) \Big] = a \cdot \mathbb{E} \Big[\big( X_{n} - \mathbb{E}[X_{n}] \big)^{2} \Big] \\
\implies & \qquad \text{Cov}(X_{n}, X_{n+h}) = a \cdot \text{Var}(X_{n}) \\
\implies & \qquad a^{\star} = \frac{\gamma(h)}{\gamma(0)} = \rho(h)
\end{align*}
\]
综上,time series \(\left\{ X_{n} \right\}\) 的 BLP 为:
\]
且 BLP 相关的 MSE 为:
\text{MSE} & = \mathbb{E}\big[ \big( X_{n+h} - l(X_{n}) \big)^{2} \big] \\
& = \mathbb{E} \Big[ \Big( X_{n+h} - \mu - \rho(h) \big( X_{n} - \mu \big) \Big)^{2} \Big] \\
& = \rho(0) \cdot \big( 1 - \rho^{2}(h) \big)
\end{align*}
\]
Time Series Analysis (Best MSE Predictor & Best Linear Predictor)的更多相关文章
- PP: Multilevel wavelet decomposition network for interpretable time series analysis
Problem: the important frequency information is lack of effective modelling. ?? what is frequency in ...
- A New Recurrence-Network-Based Time Series Analysis Approach for Characterizing System Dynamics - Guangyu Yang, Daolin Xu * and Haicheng Zhang
Purpose: characterize the evolution of dynamical systems. In this paper, a novel method based on eps ...
- survey on Time Series Analysis Lib
(1)I spent my 4th year Computing project on implementing time series forecasting for Java heap usage ...
- time series analysis
1 总体介绍 在以下主题中,我们将回顾有助于分析时间序列数据的技术,即遵循非随机顺序的测量序列.与在大多数其他统计数据的上下文中讨论的随机观测样本的分析不同,时间序列的分析基于数据文件中的连续值表示以 ...
- predict.glm -> which class does it predict?
Jul 10, 2009; 10:46pm predict.glm -> which class does it predict? 2 posts Hi, I have a question a ...
- Visibility Graph Analysis of Geophysical Time Series: Potentials and Possible Pitfalls
Tasks: invest papers 3 篇. 研究主动权在我手里. I have to. 1. the benefit of complex network: complex networ ...
- Regression analysis
Source: http://wenku.baidu.com/link?url=9KrZhWmkIDHrqNHiXCGfkJVQWGFKOzaeiB7SslSdW_JnXCkVHsHsXJyvGbDv ...
- Bayesian generalized linear model (GLM) | 贝叶斯广义线性回归实例
一些问题: 1. 什么时候我的问题可以用GLM,什么时候我的问题不能用GLM? 2. GLM到底能给我们带来什么好处? 3. 如何评价GLM模型的好坏? 广义线性回归啊,虐了我快几个月了,还是没有彻底 ...
- Time Series data 与 sequential data 的区别
It is important to note the distinction between time series and sequential data. In both cases, the ...
- 7、RNAseq Downstream Analysis
Created by Dennis C Wylie, last modified on Jun 29, 2015 Machine learning methods (including cluster ...
随机推荐
- SPFA和链式前向星
链式前向星 一种存储图的数据结构 建立一个结构体和一个数组加一个变量,这里的to代表边\((u,v)\)中的\(v\)结点,而\(edge\)数组的索引\(idx\)代表\(u\),其中\(w\)代表 ...
- x=x+=x-=x-x;
int x=10; x=x+=x-=x-x; // x=x+(x-(x-x)) System.out.println(x); 输出结果20
- whylogs工具库的工业实践!机器学习模型流程与效果监控 ⛵
作者:韩信子@ShowMeAI 机器学习实战系列:https://www.showmeai.tech/tutorials/41 本文地址:https://www.showmeai.tech/artic ...
- 数电第六周周结_by_yc
时序逻辑电路的设计要点: ①只有时钟信号和复位信号可以放在敏感列表里: ②使用非阻塞赋值,即使用"<="; ③无需对所有分支进行描述,对于未描述的分支,变量将保持 ...
- day28-jQuery01
jQuery01 参考文档1:jQuery API 中文文档 | jQuery API 中文在线手册 | jquery api 下载 | jquery api chm (cuishifeng.cn) ...
- 3.5:基于Python的KNN算法简单实现
〇.目标 1.使用pycharm工具创建项目demo: 2.使用python语言实现KNN算法. 一.创建脚本文件 二.编写KNN算法程序 KNN算法所阐述的核心思想在KNN.py文件的注释部分具有详 ...
- JavaEE Day13 Tomcat和Servlet
之前是web基础,现在是web核心 今日内容: web相关概念的回顾 开源的web服务器软件:Tomcat Servlet:整个web技术的核心[Servlet入门] 一.web相关概念的回顾 1.软 ...
- mysql基础问题三问(底层逻辑;正在执行;日志观察)
背景:经常面试会遇到且实际工作中也会应用到的三个场景: 目录: 一.mysql查询时的底层原理是什么? 二.如何查看正在执行的mysql语句? 三.如何观察mysql运行过程中的日志信息? - - - ...
- python基础-常用内置包
内置包是python自带的一些功能模块,有需求时可以在自己文件中直接导入使用. 1.datetime包 python中的时间包,可以在业务开发中辅助我们处理时间信息: # datetime可以 ...
- 一篇文章教你实战Docker容器数据卷
在上一篇中,咱们对Docker中的容器数据卷做了介绍.已经知道了容器数据卷是什么?能干什么用.那么本篇咱们就来实战容器数据卷,Docker容器数据卷案例主要做以下三个案例 1:宿主机(也就是Docke ...