SPPNet

首先介绍最为传统的alexNet,本文以及R-CNN有基于该网络上进行改进

1.输入224*224的图片,经过卷积池化等操作后在最后的卷积层会变成13*13的图片
2.后面接两个全连接层
3.最后接一个softmax进行打分分类(分成1000类是因为ImageNet上的图片总类为1000类)

SPPNet的介绍

  • 之前的卷积神经网络只能输入固定的尺寸进去因此不得不裁剪/变形。如图所示:

  • 本文作者提出对于输入图片的尺寸要求只需要在全连接层,对于卷积层没有要求,所以为了能够在输入的时候能够输入任意大小的图片作者在最后一层卷积层和全连接层之间加了一个特征金字塔池化层
  • 具体如下图所示:第一个为传统的CNN结构,下面为加了SPPNet的网络结构

作者为什么要这么加?

  1. 对于分类任务这样做就可以在输入图片使输入多尺度图片(将原图片变大变小等)扩充数据集
  2. 对于后面的目标检测任务可以改进传统的R-CNN,传统的R-CNN需要将图片通过select search选出大概两千个区域再通过CNN卷积层,非常耗时。而加上SPPNet后可以输入整张图片进入卷积层,节省时间
  • 形象理解如下图所示:

进入之后框如何画?

  • 作者发现,卷积后对应的位置并不会发生改变,每个卷积层会匹配响应的区域。如下图所示:

1.上图显示,车轮在原图中的位置在特征图上也会出现在响应的位置
2.上图卷积核匹配的响应的(轮廓,颜色,纹理)与(c)匹配的也相似
3.这样在目标检测使可以根据特征图画出该物体的位置,也就可以画出具体的框了

SPPNet的具体工作原理?

  • SPPNet需要在最后的卷积层将不同的尺寸的特征图变化到统一尺寸大小具体使怎么做的呢?
  • 在读论文使作者说到最大池化,我刚开始误解为是和前面的池化层一样通过滑动窗口实现。然而并不是。具体如何请看下图:
  1. 对于分类任务提取特征时:

  2. 对于目标检测任务提取特征时

1. 例如上图,特征池化层分别为(4*4,2*2,1*1)
2. 将4*4的池化层等比例映射到特征图中,然后再取16格中的每个小格的最大值,再将其拉伸为16*1的vector
3. 同理可得,将2*2的池化层等比例映射到特征图中,再取4格,最后将其拉伸为4*1的vector
4. 1*1的将其拉伸成1*1的vector
5. 最后形成的时(16+4+1)*256(256是深度)的向量

更为具体的如下图所示:

1.左边是8*8的特征图的池化层的划分和将其拉伸成一维向量
2.右边是任意尺度的特征图的划分
  • 综上所述:任意尺度的特征图都可以划分维固定大小的维度

总览:



SPPNet(特征金字塔池化)学习笔记的更多相关文章

  1. Spatial pyramid pooling (SPP)-net (空间金字塔池化)笔记(转)

    在学习r-cnn系列时,一直看到SPP-net的身影,许多有疑问的地方在这篇论文里找到了答案. 论文:Spatial Pyramid Pooling in Deep Convolutional Net ...

  2. 【神经网络与深度学习】【计算机视觉】SPPNet-引入空间金字塔池化改进RCNN

    转自: https://zhuanlan.zhihu.com/p/24774302?refer=xiaoleimlnote 继续总结一下RCNN系列.上篇RCNN- 将CNN引入目标检测的开山之作 介 ...

  3. SPPNet论文翻译-空间金字塔池化Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    http://www.dengfanxin.cn/?p=403 原文地址 我对物体检测的一篇重要著作SPPNet的论文的主要部分进行了翻译工作.SPPNet的初衷非常明晰,就是希望网络对输入的尺寸更加 ...

  4. 空间金字塔池化(Spatial Pyramid Pooling,SPP)

    基于空间金字塔池化的卷积神经网络物体检测 原文地址:http://blog.csdn.net/hjimce/article/details/50187655 作者:hjimce 一.相关理论 本篇博文 ...

  5. 空间金字塔池化(Spatial Pyramid Pooling, SPP)原理和代码实现(Pytorch)

    想直接看公式的可跳至第三节 3.公式修正 一.为什么需要SPP 首先需要知道为什么会需要SPP. 我们都知道卷积神经网络(CNN)由卷积层和全连接层组成,其中卷积层对于输入数据的大小并没有要求,唯一对 ...

  6. 空间金字塔池化 ssp-net

    <Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition>,这篇paper提出了空间金字 ...

  7. SPP空间金字塔池化技术的直观理解

    空间金字塔池化技术, 厉害之处,在于使得我们构建的网络,可以输入任意大小的图片,不需要经过裁剪缩放等操作. 是后续许多金字塔技术(psp,aspp等)的起源,主要的目的都是为了获取场景语境信息,获取上 ...

  8. R语言函数化学习笔记6

    R语言函数化学习笔记 1.apply函数 可以让list或者vector的元素依次执行一遍调用的函数,输出的结果是list格式 2.sapply函数 原理和list一样,但是输出的结果是一个向量的形式 ...

  9. R语言函数化学习笔记3

    R语言函数化学习笔记3 R语言常用的一些命令函数 1.getwd()查看当前R的工作目录 2.setwd()修改当前工作目录 3.str()可以输出指定对象的结构(类型,位置等),同理还有class( ...

随机推荐

  1. 体验javascript之美6:如果你觉得什么都会了或者不知道js学什么了看这里-面向对象编程

    概述 当大家已经把js的语言基础理解了,然后能够写出一些简单的例子了,这个时候基本上达到了一年工作经验的水平,而自己能够独立的写一些小功能,完成一些小效果,或者临摹修改一些比较复杂的插件的时候差不多就 ...

  2. Chrome 已经原生支持截图功能,还可以给节点截图!

    昨天 Chrome62 稳定版释出,除了常规修复各种安全问题外,还增加很多功能上的支持,比如说今天要介绍的强大的截图功能. 直接截图 打开开发者工具页面,选择左上角的元素选择按钮(Inspect) W ...

  3. Mybatis-Dao层实现(通过代理方式)

    1.代理方式开发是主流 2.Mapper接口开发方法只需要编写Mapper接口(相当于Dao接口),然后由Mybatis根据接口创建动态代理对象 Mapper接口开发需要遵循以下规范 一一对应 Use ...

  4. springdata jpa多表查询的方式

    方式一:使用@Query注解方式查询主要有JPQL方式,也就是面向对象的方式,这种情况下查表其实查的是对象,字段是实体中的属性,该方式可以直接映射到实体,如下图. 使用jpql的方式模糊查询时候不能使 ...

  5. ADO访问Excel

    需要安装驱动:Microsoft Access Database Engine,可搜索下载,有64位和32位之分. 随便新建一个后缀名为udl的文件,双击打开.注意,现如今一般都是64位系统,双击打开 ...

  6. codeforces标签设置【codeforces内操作, 非浏览器操作】

    直接干货~ 明确需求,关闭标签 步骤: 1.选中上方PROBLEM SET 2.找到Settings  第一个选项是展示未accepted的标签, 第二个选项是隐藏已accepted的标签 官方标签设 ...

  7. 快速排序算法 - go实现

    在分析redis集群中大Key的时候,通常都采用分析rdb文件的方式:但是这种方式需要在每一台redis服务器上部署分析程序及分析脚本,而像salt之类的工具运维没有开放给我们使用,一台一台部署不好管 ...

  8. 腾讯云服务器ssh登录老是自动断开链接的解决办法

    vim /etc/ssh/sshd_config 找到下面两行 #ClientAliveInterval 0 #ClientAliveCountMax 3 去掉注释,改成 ClientAliveInt ...

  9. tomcat的搭建和介绍

    第19章 tomcat的搭建 19.1 tomcat学习之前的预备知识 19.1.1 什么是JVM和JDK,JRE JVM            java虚拟机,实现一份代码可以在不同的平台执行,具有 ...

  10. 关于Jupyter Notebook无法自动补全(Autocompletion),报错TypeError: __init__() got an unexpected keyword argument 'column' 的解决方案

    关于Jupyter Notebook无法自动补全(Autocompletion),报错TypeError: __init__() got an unexpected keyword argument ...