跟我学Python丨图像增强及运算:局部直方图均衡化和自动色彩均衡化处理
摘要:本文主要讲解图像局部直方图均衡化和自动色彩均衡化处理。这些算法可以广泛应用于图像增强、图像去噪、图像去雾等领域。
本文分享自华为云社区《[Python从零到壹] 五十四.图像增强及运算篇之局部直方图均衡化和自动色彩均衡化处理》,作者: eastmount。
一.局部直方图均衡化
前文通过调用OpenCV中equalizeHist()函数实现直方图均衡化处理,该方法简单高效,但其实它是一种全局意义上的均衡化处理,很多时候这种操作不是很好,会把某些不该调整的部分给均衡处理了。同时,图像中不同的区域灰度分布相差甚远,对它们使用同一种变换常常产生不理想的效果,实际应用中,常常需要增强图像的某些局部区域的细节。
为了解决这类问题,Pizer等提出了局部直方图均衡化的方法(AHE),但AHE方法仅仅考虑了局部区域的像素,忽略了图像其他区域的像素,且对于图像中相似区域具有过度放大噪声的缺点。为此K. Zuiderveld等人提出了对比度受限CLAHE的图像增强方法,通过限制局部直方图的高度来限制局部对比度的增强幅度,从而限制噪声的放大及局部对比度的过增强,该方法常用于图像增强,也可以被用来进行图像去雾操作[1-2]。
在OpenCV中,调用函数createCLAHE()实现对比度受限的局部直方图均衡化。它将整个图像分成许多小块(比如按10×10作为一个小块),那么对每个小块进行均衡化。这种方法主要对于图像直方图不是那么单一的(比如存在多峰情况)图像比较实用。其函数原型如下所示:
retval = createCLAHE([, clipLimit[, tileGridSize]])
- clipLimit参数表示对比度的大小
- tileGridSize参数表示每次处理块的大小
调用createCLAHE()实现对比度受限的局部直方图均衡化的代码如下:
# -*- coding: utf-8 -*-
# By:Eastmount
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取图片
img = cv2.imread('lena.bmp')
#灰度转换
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#局部直方图均衡化处理
clahe = cv2.createCLAHE(clipLimit=2, tileGridSize=(10,10))
#将灰度图像和局部直方图相关联, 把直方图均衡化应用到灰度图
result = clahe.apply(gray)
#显示图像
plt.subplot(221)
plt.imshow(gray, cmap=plt.cm.gray), plt.axis("off"), plt.title('(a)')
plt.subplot(222)
plt.imshow(result, cmap=plt.cm.gray), plt.axis("off"), plt.title('(b)')
plt.subplot(223)
plt.hist(img.ravel(), 256), plt.title('(c)')
plt.subplot(224)
plt.hist(result.ravel(), 256), plt.title('(d)')
plt.show()
输出结果如图1所示,图1(a)为原始图像,对应的直方图为图1,图1(b)和图1(d)为对比度受限的局部直方图均衡化处理后的图像及对应直方图,它让图像的灰度值分布更加均衡。可以看到,相对于全局的直方图均衡化,这个局部的均衡化似乎得到的效果更自然一点。

二.自动色彩均衡化
Retinex算法是代表性的图像增强算法,它根据人的视网膜和大脑皮层模拟对物体颜色的波长光线反射能力而形成,对复杂环境下的一维条码具有一定范围内的动态压缩,对图像边缘有着一定自适应的增强。自动色彩均衡(Automatic Color Enhancement,ACE)算法是在Retinex算法的理论上提出的,它通过计算图像目标像素点和周围像素点的明暗程度及其关系来对最终的像素值进行校正,实现图像的对比度调整,产生类似人体视网膜的色彩恒常性和亮度恒常性的均衡,具有很好的图像增强效果[3-4]。
ACE算法包括两个步骤,一是对图像进行色彩和空域调整,完成图像的色差校正,得到空域重构图像;二是对校正后的图像进行动态扩展。ACE算法计算公式如下:

其中,W是权重参数,离中心点像素越远的W值越小;g是相对对比度调节参数,其计算方法如公式(22-2)所示,a表示控制参数,值越大细节增强越明显。

图2是条形码图像进行ACE图像增强后的效果图,通过图像增强后的图(b)对比度更强,改善了原图像的明暗程度,增强的同时保持了图像的真实性。

由于OpenCV中暂时没有ACE算法包,下面的代码是借鉴“zmshy2128”老师的文章,修改实现的彩色直方图均衡化处理[5]。
# -*- coding: utf-8 -*-
# By:Eastmount
# 参考zmshy2128老师文章
import cv2
import numpy as np
import math
import matplotlib.pyplot as plt
#线性拉伸处理
#去掉最大最小0.5%的像素值 线性拉伸至[0,1]
def stretchImage(data, s=0.005, bins = 2000):
ht = np.histogram(data, bins);
d = np.cumsum(ht[0])/float(data.size)
lmin = 0; lmax=bins-1
while lmin<bins:
if d[lmin]>=s:
break
lmin+=1
while lmax>=0:
if d[lmax]<=1-s:
break
lmax-=1
return np.clip((data-ht[1][lmin])/(ht[1][lmax]-ht[1][lmin]), 0,1)
#根据半径计算权重参数矩阵
g_para = {}
def getPara(radius = 5):
global g_para
m = g_para.get(radius, None)
if m is not None:
return m
size = radius*2+1
m = np.zeros((size, size))
for h in range(-radius, radius+1):
for w in range(-radius, radius+1):
if h==0 and w==0:
continue
m[radius+h, radius+w] = 1.0/math.sqrt(h**2+w**2)
m /= m.sum()
g_para[radius] = m
return m
#常规的ACE实现
def zmIce(I, ratio=4, radius=300):
para = getPara(radius)
height,width = I.shape
#Python3报错如下 使用列表append修改
zh = []
zw = []
n = 0
while n < radius:
zh.append(0)
zw.append(0)
n += 1
for n in range(height):
zh.append(n)
for n in range(width):
zw.append(n)
n = 0
while n < radius:
zh.append(height-1)
zw.append(width-1)
n += 1
#print(zh)
#print(zw)
Z = I[np.ix_(zh, zw)]
res = np.zeros(I.shape)
for h in range(radius*2+1):
for w in range(radius*2+1):
if para[h][w] == 0:
continue
res += (para[h][w] * np.clip((I-Z[h:h+height, w:w+width])*ratio, -1, 1))
return res
#单通道ACE快速增强实现
def zmIceFast(I, ratio, radius):
print(I)
height, width = I.shape[:2]
if min(height, width) <=2:
return np.zeros(I.shape)+0.5
Rs = cv2.resize(I, (int((width+1)/2), int((height+1)/2)))
Rf = zmIceFast(Rs, ratio, radius) #递归调用
Rf = cv2.resize(Rf, (width, height))
Rs = cv2.resize(Rs, (width, height))
return Rf+zmIce(I,ratio, radius)-zmIce(Rs,ratio,radius)
#rgb三通道分别增强 ratio是对比度增强因子 radius是卷积模板半径
def zmIceColor(I, ratio=4, radius=3):
res = np.zeros(I.shape)
for k in range(3):
res[:,:,k] = stretchImage(zmIceFast(I[:,:,k], ratio, radius))
return res
#主函数
if __name__ == '__main__':
img = cv2.imread('test01.png')
res = zmIceColor(img/255.0)*255
cv2.imwrite('Ice.jpg', res)
运行结果如图3和图4所示,ACE算法能有效进行图像去雾处理,实现图像的细节增强。

三.总结
本文主要讲解图像局部直方图均衡化和自动色彩均衡化处理。这些算法可以广泛应用于图像增强、图像去噪、图像去雾等领域。
跟我学Python丨图像增强及运算:局部直方图均衡化和自动色彩均衡化处理的更多相关文章
- 小白学 Python 数据分析(10):Pandas (九)数据运算
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
- 【Python五篇慢慢弹】快速上手学python
快速上手学python 作者:白宁超 2016年10月4日19:59:39 摘要:python语言俨然不算新技术,七八年前甚至更早已有很多人研习,只是没有现在流行罢了.之所以当下如此盛行,我想肯定是多 ...
- 简学Python第一章__进入PY的世界
#cnblogs_post_body h2 { background: linear-gradient(to bottom, #18c0ff 0%,#0c7eff 100%); color: #fff ...
- 小朋友学Python(4)
Mac下安装Python 3 Mac系统会自带Python 2.7.x.安装Python 3时,不要卸载Python 2.7.x,因为有Mac系统有一些库会依赖于Python 2.7.x. 安装步骤: ...
- D10——C语言基础学PYTHON
C语言基础学习PYTHON——基础学习D10 20180906内容纲要: 1.协程 (1)yield (2)greenlet (3)gevent (4)gevent实现单线程下socket多并发 2. ...
- 《趣学Python编程》
<趣学Python编程> 基本信息 作者: (美)Jason Briggs 译者: 尹哲 出版社:人民邮电出版社 ISBN:9787115335951 上架时间:2014-2-21 出版日 ...
- Python的自增运算与Python变量的浅析
一.关于Python的自增运算 学了C/C++后再学习Python,不自觉地就打出了自增运算符++,但是发现Python解释器不认识,查了下资料,发现Python中没有这个运算符.这里暂时不探讨自增运 ...
- 小白学 Python(2):基础数据类型(上)
人生苦短,我选Python 引言 前文传送门 小白学 Python(1):开篇 接触一门新的语言,肯定要先了解它的基础数据类型.啥?你问我为啥要先了解基础数据类型? 为了你的生命安全,还是乖乖听我 B ...
- 小白学 Python(4):变量基础操作
人生苦短,我选Python 引言 前文传送门 小白学 Python(1):开篇 小白学 Python(2):基础数据类型(上) 小白学 Python(3):基础数据类型(下) 前面的文章中,我们介绍了 ...
- 小白学 Python(5):基础运算符(上)
人生苦短,我选Python 前文传送门 小白学 Python(1):开篇 小白学 Python(2):基础数据类型(上) 小白学 Python(3):基础数据类型(下) 小白学 Python(4):变 ...
随机推荐
- 禁忌搜索算法TSA 旅行商问题TSP python
import math import random import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot ...
- Oracle数据库PLSQL编程和存储过程
一.PLSQL编程 1.1.使用PLSQL实现 Hello world! 1 -- Created on 2022/8/22 by ADMINISTRATOR 2 declare 3 -- 这是申明变 ...
- Windows7下驱动开发与调试体系构建——3.调试体系概述
目录/参考资料:https://www.cnblogs.com/railgunRG/p/14412321.html 调试体系概述 0.什么是自建调试体系? 就是复写windows的调试api,使得调试 ...
- Java反序列化中jndi注入的高版本jdk绕过
群里大佬们打哈哈的内容,菜鸡拿出来整理学习一下,炒点冷饭. 主要包含以下三个部分: jndi注入原理 jndi注入与反序列化 jndi注入与jdk版本 jndi注入原理: JNDI(Java Name ...
- 基于SqlSugar的开发框架循序渐进介绍(20)-- 在基于UniApp+Vue的移动端实现多条件查询的处理
在做一些常规应用的时候,我们往往需要确定条件的内容,以便在后台进行区分的进行精确查询,在移动端,由于受限于屏幕界面的情况,一般会对多个指定的条件进行模糊的搜索,而这个搜索的处理,也是和前者强类型的条件 ...
- JS逆向实战8——某网实战(基于golang-colly)
其实本章算不上逆向教程 只是介绍golang的colly框架而已 列表页分析 根据关键字搜索 通过抓包分析可知 下一页所请求的参数如下 上图标红的代表所需参数 所以其实我们真正需要的也就是Search ...
- SpringMVC&Maven进阶
3. SpringMVC 3.1 了解SpringMVC 概述 SpringMVC技术与Servlet技术功能等同,均属于web层开发技术 学习路线 请求与响应 REST分割 SSM整合 拦截器 目标 ...
- 搭建K8S集群前置条件
搭建K8S集群 搭建k8s环境平台规划 单master集群 单个master节点,然后管理多个node节点 多master集群 多个master节点,管理多个node节点,同时中间多了一个负载均衡的过 ...
- 数电第五周周结_by_yc
数电第五周周结_by_yc 基本要点: 组合逻辑电路的行为特点.经典组合逻辑电路的设计.PPA优化 组合逻辑电路设计要点: ①敏感变量列表应包含所有会影响输出的控制量: ②条件语句的完全描述, ...
- <一>智能指针基础
代码1 int main(){ //裸指针,手动开辟,需要自己释放,如果忘记了或者因为 //程序逻辑导致p没有释放,那么就会导致内存泄漏 int *p=new int(10); if(***){ re ...