OpenCV-Python:IV OpenCV中的图像处理

24 模板匹配

目标
在本节我们要学习:
  1. 使用模板匹配在一幅图像中查找目标
  2. 函数:cv2.matchTemplate(),cv2.minMaxLoc()
原理
  模板匹配是用来在一副大图中搜寻查找模版图像位置的方法。OpenCV 为我们提供了函数:cv2.matchTemplate()。和 2D 卷积一样,它也是用模板图像在输入图像(大图)上滑动,并在每一个位置对模板图像和与其对应的输入图像的子区域进行比较。OpenCV 提供了几种不同的比较方法(细节请看文档)。返回的结果是一个灰度图像,每一个像素值表示了此区域与模板的匹配程度。
如果输入图像的大小是(WxH),模板的大小是(wxh),输出的结果的大小就是(W-w+1,H-h+1)。当你得到这幅图之后,就可以使用函数cv2.minMaxLoc() 来找到其中的最小值和最大值的位置了。第一个值为矩形左上角的点(位置),(w,h)为 moban 模板矩形的宽和高。这个矩形就是找到的模板区域了。
注意:如果你使用的比较方法是 cv2.TM_SQDIFF,最小值对应的位置才是匹配的区域。

24.1 OpenCV 中的模板匹配

我们这里有一个例子:我们在梅西的照片中搜索梅西的面部。所以我们要制作下面这样一个模板:


我们会尝试使用不同的比较方法,这样我们就可以比较一下它们的效果了。

import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('messi5.jpg',0)
img2 = img.copy()
template = cv2.imread('messi_face.jpg',0)
w, h = template.shape[::-1]
# All the 6 methods for comparison in a list
methods = ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR',
'cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED']
for meth in methods:
img = img2.copy()
#exec 语句用来执行储存在字符串或文件中的 Python 语句。
# 例如,我们可以在运行时生成一个包含 Python 代码的字符串,然后使用 exec 语句执行这些语句。
#eval 语句用来计算存储在字符串中的有效 Python 表达式
method = eval(meth)
# Apply template Matching
res = cv2.matchTemplate(img,template,method)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
# 使用不同的比较方法,对结果的解释不同
# If the method is TM_SQDIFF or TM_SQDIFF_NORMED, take minimum
if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:
top_left = min_loc
else:
top_left = max_loc
bottom_right = (top_left[0] + w, top_left[1] + h)
cv2.rectangle(img,top_left, bottom_right, 255, 2)
plt.subplot(121),plt.imshow(res,cmap = 'gray')
plt.title('Matching Result'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img,cmap = 'gray')
plt.title('Detected Point'), plt.xticks([]), plt.yticks([])
plt.suptitle(meth)
plt.show()

结果如下:
cv2.TM_CCOEFF

cv2.TM_CCOEFF_NORMED

cv2.TM_CCORR

cv2.TM_CCORR_NORMED   

 
cv2.TM_SQDIFF    

cv2.TM_SQDIFF_NORMED

我们看到 cv2.TM_CCORR 的效果不想我们想的那么好。

24.2 多对象的模板匹配

在前面的部分,我们在图片中搜素梅西的脸,而且梅西只在图片中出现了一次。假如你的目标对象只在图像中出现了很多次怎么办呢?函数cv.imMaxLoc() 只会给出最大值和最小值。此时,我们就要使用阈值了。
在下面的例子中我们要经典游戏 Mario 的一张截屏图片中找到其中的硬币。

import cv2
import numpy as np
from matplotlib import pyplot as plt img_rgb = cv2.imread('mario.png')
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
template = cv2.imread('mario_coin.png',0)
w, h = template.shape[::-1] res = cv2.matchTemplate(img_gray,template,cv2.TM_CCOEFF_NORMED)
threshold = 0.8
loc = np.where( res >= threshold)
for pt in zip(*loc[::-1]):
cv2.rectangle(img_rgb, pt, (pt[0] + w, pt[1] + h), (0,0,255), 2) cv2.imwrite('res.png',img_rgb)

结果:
    

更多内容请关注公众号:

[OpenCV-Python] 24 模板匹配的更多相关文章

  1. 使用Opencv中matchTemplate模板匹配方法跟踪移动目标

    模板匹配是一种在图像中定位目标的方法,通过把输入图像在实际图像上逐像素点滑动,计算特征相似性,以此来判断当前滑块图像所在位置是目标图像的概率. 在Opencv中,模板匹配定义了6种相似性对比方式: C ...

  2. 使用Python+OpenCV进行图像模板匹配(Match Template)

    2017年9月22日 BY 蓝鲸 LEAVE A COMMENT 本篇文章介绍使用Python和OpenCV对图像进行模板匹配和识别.模板匹配是在图像中寻找和识别模板的一种简单的方法.以下是具体的步骤 ...

  3. 使用OpenCV&&C++进行模板匹配.

    一:课程介绍 1.1:学习目标 学会用imread载入图像,和imshow输出图像. 用nameWindow创建窗口,用createTrackbar加入滚动条和其回调函数的写法. 熟悉OpenCV函数 ...

  4. OpenCV中的模板匹配/Filter2d

    1.模板匹配 模板匹配是在图像中寻找目标的方法之一.Come On, Boy.我们一起来看看模板匹配到底是怎么回事. 参考链接:http://www.opencv.org.cn/opencvdoc/2 ...

  5. python实现模板匹配

    目录: (一)原理 (二)代码实现和几种常见的模板匹配算法 正文: (一)原理 在待检测图像上,从左到右,从上向下计算模板图像与重叠子图像的匹配度,匹配程度越大,两者相同的可能性越大. 作用有局限性, ...

  6. opencv如何用模板匹配寻找目标

    首先使用: MatchTemplate 比较模板和重叠的图像区域 void cvMatchTemplate( const CvArr* image, const CvArr* templ, CvArr ...

  7. opencv 单目标模板匹配(只适用于模板与目标尺度相同)

    #include <iostream> #include "opencv/cv.h" #include "opencv/cxcore.h" #inc ...

  8. Opencv for android 模板匹配

    因为有这方面的需要所以,对模板查找搜寻了相关资料,只是对于算法的东西很难看得动,特别是opencv涉及的很多的数学方法. 所以只为了实现这个功能,因为需求比较简单,在网上也搜寻到了相关代码,就直接拿来 ...

  9. OpenCV-Python 模板匹配 | 三十一

    目标 在本章中,您将学习 使用模板匹配在图像中查找对象 你将看到以下功能:cv.matchTemplate(),cv.minMaxLoc() 理论 模板匹配是一种用于在较大图像中搜索和查找模板图像位置 ...

  10. Python+OpenCV图像处理(九)—— 模板匹配

    百度百科:模板匹配是一种最原始.最基本的模式识别方法,研究某一特定对象物的图案位于图像的什么地方,进而识别对象物,这就是一个匹配问题.它是图像处理中最基本.最常用的匹配方法.模板匹配具有自身的局限性, ...

随机推荐

  1. Hadoop警告信息:WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform.

    when键入命令: hadoop fs -ls / 若出现以下警告信息: Hadoop警告问题:WARN util.NativeCodeLoader: Unable to load native-ha ...

  2. Windows11右键改Win10

    Win11改Win10右键模式 1.以管理员身份运行CMD控制台 2.在控制台中输入下列代码后回车执行 reg add "HKCU\Software\Classes\CLSID\{86ca1 ...

  3. week4题解

    1.深度优先搜索 思路:以固定的移动顺序走迷宫,若能到终点则记一次 到终点后回溯到前一个有分岔的地方,走另一条路线 若走到死路也同样回溯到前一个有分叉的地方. 最终遍历所有路线 #include &l ...

  4. C# 微信开发 微信号接入 (附完整源码)(1)

    1. 首先配置微信服务器设置 a)        企业号配置信息 (详见:ConfigurationManager类) b)        企业号服务器配置: ConfigurationManager ...

  5. 第二章启动引导器GRUB2

    第二章启动引导器GRUB2grub的配置文件路径:vim /boot/grub2/grub.cfg (不建议直接编辑)vim /etc/default/grub (可编辑的文件)将编辑的操作刷新到/b ...

  6. java8利用流和lambda表达式对list遍历处理

    java8的lambda表达式提供了一些方便list操作的方法,主要涵盖分组.过滤.求和.最值.排序.去重. 优点: (1) 简洁,跟之前的传统写法对比,能少写不少代码; (2) 易并行计算.尤其适用 ...

  7. Thingsboard3.2.2本地部署

    Thingboard3.2.2本地安装编译详细教程!!! 一:拉取源码. 创建一个空的文件夹 在此处使用git拉取源码. git clone https://github.com/thingsboar ...

  8. Python学习笔记--高阶技巧

    闭包(避免全局变量被修改的风险) 函数的嵌套的利用 若是只是调用到外部函数的值,只需要用到函数的嵌套,具体实现如下: 若是要对外部函数的值进行修改,需要用到nonlocal关键字,具体实现如下: at ...

  9. Linux & 标准C语言学习 <DAY5>

    一.if分支语句     if(表达式)  //单分支语句     {           //表达式的值为真,则执行此处代码     }     if(表达式)  //双分支语句     {     ...

  10. 使用cmd命令行安装 windows系统

    条件:Microsoft WindowsPE 或其他第三方 WindowsPE 1. 使用 diskpart 分区: list disk:列出所有磁盘 select disk  编号:选择某块磁盘 c ...