最短路(Floyed、Dijkstra、Bellman-Ford、SPFA)
一、Floyed-Warshall算法
枚举中间点起点终点,对整个图进行松弛操作,就能得到整个图的多源最短路径;



例:POJ2240 Arbitrage
Your job is to write a program that takes a list of currency exchange rates as input and then determines whether arbitrage is possible or not.
Input
Test cases are separated from each other by a blank line. Input is terminated by a value of zero (0) for n.
Output
Sample Input
3
USDollar
BritishPound
FrenchFranc
3
USDollar 0.5 BritishPound
BritishPound 10.0 FrenchFranc
FrenchFranc 0.21 USDollar 3
USDollar
BritishPound
FrenchFranc
6
USDollar 0.5 BritishPound
USDollar 4.9 FrenchFranc
BritishPound 10.0 FrenchFranc
BritishPound 1.99 USDollar
FrenchFranc 0.09 BritishPound
FrenchFranc 0.19 USDollar 0
Sample Output
Case 1: Yes
Case 2: No
Source



#include <iostream>
#include <cstdio>
#include <map>
using namespace std;
const int maxn=35;
int n,m;
map<string,int> N;
double dis[maxn][maxn]; int main()
{
int kase=1;
//freopen("Atext.in","r",stdin);
while(cin >> n,n)
{
string a,b;
double tmp;
bool flag=false;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
dis[i][j]=-1;
for(int i=0;i<n;i++){
cin >> a;
N.insert(make_pair(a,i));
}
cin >> m;
for(int i=0;i<m;i++)
{
cin >> a >> tmp >> b;
dis[N[a]][N[b]]=tmp; //邻接矩阵存边的信息;
}
for(int k=0;k<n;k++)
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
if(i!=j&&j!=k&&k!=i&&dis[i][k]!=-1&&dis[k][j]!=-1)
dis[i][j]=max(dis[i][k]*dis[k][j],dis[i][j]);
/*for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
cout << dis[i][j] << " ";
cout << endl;
}
cout << endl;*/
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
if(dis[i][j]*dis[j][i]>1)flag=1;
printf("Case %d: %s\n",kase,flag?"Yes":"No");
N.clear();
kase++;
}
return 0;
}
附:Warshall算法的传递闭包



例:POJ2253 Frogger
Description
Unfortunately Fiona's stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps.
To execute a given sequence of jumps, a frog's jump range obviously must be at least as long as the longest jump occuring in the sequence.
The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones.
You are given the coordinates of Freddy's stone, Fiona's stone and all other stones in the lake. Your job is to compute the frog distance between Freddy's and Fiona's stone.
Input
Output
Sample Input
2
0 0
3 4 3
17 4
19 4
18 5 0
Sample Output
Scenario #1
Frog Distance = 5.000 Scenario #2
Frog Distance = 1.414
Source

#include <iostream>
#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll;
const int maxn=205;
struct node{
int x,y;
}N[maxn];
int con[maxn][maxn],n;
double G[maxn][maxn];
void floyed() //枚举所有边进行松弛;
{
for(int k=0;k<n;k++)
for(int i=0;i<n;i++)
for(int j=0;j<n;j++) //松弛为最大边的最小值;
G[i][j]=min(G[i][j],max(G[i][k],G[k][j]));
}
int main()
{
int kase=0;
while(~scanf("%d",&n),n)
{
for(int i=0;i<n;i++)
scanf("%d%d",&N[i].x,&N[i].y);
for(int i=0;i<n;i++) //这样对称的邻接矩阵只须计算一半
for(int j=i+1;j<n;j++)
G[i][j]=G[j][i]=(double)sqrt(double(N[i].x-N[j].x)*(N[i].x-N[j].x)+double(N[i].y-N[j].y)*(N[i].y-N[j].y));
floyed();
printf("Scenario #%d\n",++kase);
printf("Frog Distance = %.3lf\n\n",G[0][1]);
}
return 0;
}
二、Dijkstra算法



#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
const int maxn=1005;
const int inf=0x3f3f3f3f;
int n;
struct node{
int x,y;
}N[maxn];
bool vis[maxn];
double G[maxn][maxn],d[maxn]; //邻接矩阵
void Dijkstra()
{
fill(vis,vis+n,false);
fill(d,d+n,inf);
d[0]=0;
while(true)
{
int v=-1;
for(int i=0;i<n;i++)
if(!vis[i]&&(v==-1||d[i]<d[v])) //从尚未使用过的顶点中选取一个最小值;
v=i;
if(v==-1)
break;
vis[v]=true;
for(int i=0;i<n;i++)
d[i]=min(d[i],max(d[v],G[v][i])); //源点到各点的最长边的最小值;
}
}
int main()
{
int kase=0;
while(~scanf("%d",&n),n)
{
for(int i=0;i<n;i++)
scanf("%d%d",&N[i].x,&N[i].y);
for(int i=0;i<n;i++) //这样对称的邻接矩阵只须计算一半
for(int j=i+1;j<n;j++)
G[i][j]=G[j][i]=(double)sqrt(double(N[i].x-N[j].x)*(N[i].x-N[j].x)+double(N[i].y-N[j].y)*(N[i].y-N[j].y));
Dijkstra();
printf("Scenario #%d\n",++kase);
printf("Frog Distance = %.3f\n\n",d[1]);
}
return 0;
}
三、Bellman-Ford算法
四、SPFA算法(Shortest Path Faster Algorithm)
队列优化的bellman-ford;
例:POJ1874 畅通工程续
现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
0 1 1
0 2 3
1 2 1
0 2
3 1
0 1 1
1 2
-1
#include <iostream>
#include <queue>
#include <cstdio>
#include <vector>
using namespace std;
const int maxn=205;
const int inf=0x3f3f3f3f;
typedef pair<int,int> p;
vector<p>E[maxn];//邻接表;
int n,m,d[maxn],inq[maxn]; //d[maxn]到源点的最短距离,inq[maxn]在队列里的元素;
void init()
{
for(int i=0;i<n;i++)E[i].clear();
for(int i=0;i<n;i++)inq[i]=0;
for(int i=0;i<n;i++)d[i]=inf;
}
void spfa(int x)
{
queue<int> que;
que.push(x),d[x]=0,inq[x]=1;
while(!que.empty())
{
int now=que.front();
que.pop();
inq[now]=0;
for(int i=0;i<E[now].size();i++)
{
int v=E[now][i].first;
if(d[v]>d[now]+E[now][i].second)
{
d[v]=d[now]+E[now][i].second;
if(inq[v]==0){
inq[v]=1;
que.push(v);
}
}
}
}
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
init();
int a,b,c;
for(int i=0;i<m;i++)
{
scanf("%d%d%d",&a,&b,&c);
E[a].push_back(p(b,c));
E[b].push_back(p(a,c));
}
scanf("%d%d",&a,&b);
spfa(a);
if(d[b]==inf)
cout << -1 << endl;
else
cout << d[b] << endl;
}
return 0;
}
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn=205;
const int inf=0x3f3f3f3f;
int n,m,maze[maxn][maxn]; void floyed()
{
for(int k=0;k<n;k++)
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
if(i!=j&&j!=k&&k!=i)
maze[i][j]=min(maze[i][j],maze[i][k]+maze[k][j]);
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
int a,b,c;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
{
if(i!=j)
maze[i][j]=inf;
}
for(int i=0;i<m;i++)
{
scanf("%d%d%d",&a,&b,&c);
maze[a][b]=min(c,maze[a][b]);//处理解决重边问题;
maze[b][a]=min(c,maze[b][a]);
}
scanf("%d%d",&a,&b);
floyed();
if(maze[a][b]==inf)
cout << -1 << endl;
else
cout << maze[a][b] <<endl;
}
return 0;
}
//自我整理:最短路径的这三个算法,就像BFS一样;
//spfa:每次把发生更新的点作为当前到该点的最短路径,都入队列视为下一次遍历开始的源点;
//dijkstra:每次只取所有发生更新的点,即所有当前最短路径中里离源点最近的点作为下一次开始的源点,前面的值都视为已确定的最短路径
最短路(Floyed、Dijkstra、Bellman-Ford、SPFA)的更多相关文章
- HDOJ 2544 最短路(最短路径 dijkstra算法,SPFA邻接表实现,floyd算法)
最短路 Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
- 蓝桥杯 algo_5 最短路 (bellman,SPFA)
问题描述 给定一个n个顶点,m条边的有向图(其中某些边权可能为负,但保证没有负环).请你计算从1号点到其他点的最短路(顶点从1到n编号). 输入格式 第一行两个整数n, m. 接下来的m行,每行有三个 ...
- Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化)
Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化) 贝西在田里,想在农夫约翰叫醒她早上挤奶之前回到谷仓尽可能多地睡一觉.贝西需要她的美梦,所以她想尽快回 ...
- hdoj 2544 最短路【dijkstra or spfa】
最短路 Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
- 【最短路算法】Dijkstra+heap和SPFA的区别
单源最短路问题(SSSP)常用的算法有Dijkstra,Bellman-Ford,这两个算法进行优化,就有了Dijkstra+heap.SPFA(Shortest Path Faster Algori ...
- ACM/ICPC 之 最短路径-Bellman Ford范例(POJ1556-POJ2240)
两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可 ...
- poj1860 bellman—ford队列优化 Currency Exchange
Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 22123 Accepted: 799 ...
- Bellman - Ford 算法解决最短路径问题
Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...
- uva 558 - Wormholes(Bellman Ford判断负环)
题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...
- 最短路计数——Dijkstra
题目: 给出一个N个顶点M条边的无向无权图,顶点编号为1−N.问从顶点1开始,到其他每个点的最短路有几条. ——传送门 受到题解的启发,用 Dijkstra A掉(手工代码) 思路: 1.无向无权图, ...
随机推荐
- useBean类属性[javaChuLi.LoginBean]的值无效
今天遇到了一个错误,如图 参见:JSP 中给定的 useBean 标签的 class 属性的值无效_dkawskawx的博客-CSDN博客
- Vue解决后台传过来的时间展示时带T
用空格替换: {{scope.row.ctime.toLocaleString().replace(/T/g, ' ').replace(/\.[\d]{3}Z/, '')}} 参考作者:https: ...
- VsCode新建Java、SpringBoot、Python、JavaWeb项目的基本步骤
新建Java项目 选中正上方的搜索框,按下F1快捷键,输入create Java,即可出现这样的一个命令: 选中这个: 然后为新创建的项目选择一个合适的位置就好啦! 新建SpringBoot项目 选中 ...
- Maven项目的创建教程
1.创建Maven项目 首先File->New新建一个Maven项目,选择相应地址保存,点击CREATE完成新建 2.改成Web项目 右键选择Add Framework Support... 再 ...
- BGF bivariate generating function 双变量生成函数
目录 定义 BGF bivariate generating function horizonal GF 和 vertical GF 例子 组合数 horizonal GF vertical GF ( ...
- Qt实用技巧:在CentOS上使用linuxdeployqt打包发布qt程序
前言 之前在ubuntu上发布qt程序相对还好,使用脚本,在麒麟上发布的时候,使用脚本就不太兼容,同时为了实现直接点击应用可以启动应用的效果,使用linuxdeployqt发布qt程序. 本篇文 ...
- XAML 设计器已意外退出。(退出代码: e0434352)
一.前言 开门见山,这个问题我遇到过两次,第一次因为项目刚开始不长时间,我查了很长时间都没解决,然后就直接重写了,几乎一样的写法,但问题没复现了,但程序员思维告诉我,一定还是有比较关键的地方出现了问题 ...
- CSS实现文字颜色渐变效果
略微搜索查阅了网上的实现方法: 1.给元素添加背景渐变色,通过背景裁剪其中文字,再将文字设置为透明即可实现.(兼容性问题请自行添加浏览器前缀) background-color:linear-grad ...
- Unity3D中的Attribute详解(二)
上一篇文章我们初步了解了一下Attributes的含义,并且使用系统自带的Attributes写了点代码.在进一步解剖我们的代码之前,我觉得有个概念可能需要巩固一下:什么是元数据? 我们知道C#代码会 ...
- selenium验证码处理-打码平台操作
1.进入打码平台(超人,斐斐) 斐斐-------官网: 超人-------官网: 2.选择对应的开发文档,下载对应的demo示例,并把demo的python脚本放到项目包管理地址去 参考: 超人的开 ...