一、Floyed-Warshall算法

枚举中间点起点终点,对整个图进行松弛操作,就能得到整个图的多源最短路径;

例:POJ2240  Arbitrage

Arbitrage is the use of discrepancies in currency exchange rates to transform one unit of a currency into more than one unit of the same currency. For example, suppose that 1 US Dollar buys 0.5 British pound, 1 British pound buys 10.0 French francs, and 1 French franc buys 0.21 US dollar. Then, by converting currencies, a clever trader can start with 1 US dollar and buy 0.5 * 10.0 * 0.21 = 1.05 US dollars, making a profit of 5 percent. 

Your job is to write a program that takes a list of currency exchange rates as input and then determines whether arbitrage is possible or not. 

Input

The input will contain one or more test cases. Om the first line of each test case there is an integer n (1<=n<=30), representing the number of different currencies. The next n lines each contain the name of one currency. Within a name no spaces will appear. The next line contains one integer m, representing the length of the table to follow. The last m lines each contain the name ci of a source currency, a real number rij which represents the exchange rate from ci to cj and a name cj of the destination currency. Exchanges which do not appear in the table are impossible. 
Test cases are separated from each other by a blank line. Input is terminated by a value of zero (0) for n.

Output

For each test case, print one line telling whether arbitrage is possible or not in the format "Case case: Yes" respectively "Case case: No".

Sample Input

3
USDollar
BritishPound
FrenchFranc
3
USDollar 0.5 BritishPound
BritishPound 10.0 FrenchFranc
FrenchFranc 0.21 USDollar 3
USDollar
BritishPound
FrenchFranc
6
USDollar 0.5 BritishPound
USDollar 4.9 FrenchFranc
BritishPound 10.0 FrenchFranc
BritishPound 1.99 USDollar
FrenchFranc 0.09 BritishPound
FrenchFranc 0.19 USDollar 0

Sample Output

Case 1: Yes
Case 2: No

Source

#include <iostream>
#include <cstdio>
#include <map>
using namespace std;
const int maxn=35;
int n,m;
map<string,int> N;
double dis[maxn][maxn]; int main()
{
int kase=1;
//freopen("Atext.in","r",stdin);
while(cin >> n,n)
{
string a,b;
double tmp;
bool flag=false;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
dis[i][j]=-1;
for(int i=0;i<n;i++){
cin >> a;
N.insert(make_pair(a,i));
}
cin >> m;
for(int i=0;i<m;i++)
{
cin >> a >> tmp >> b;
dis[N[a]][N[b]]=tmp; //邻接矩阵存边的信息;
}
for(int k=0;k<n;k++)
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
if(i!=j&&j!=k&&k!=i&&dis[i][k]!=-1&&dis[k][j]!=-1)
dis[i][j]=max(dis[i][k]*dis[k][j],dis[i][j]);
/*for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
cout << dis[i][j] << " ";
cout << endl;
}
cout << endl;*/
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
if(dis[i][j]*dis[j][i]>1)flag=1;
printf("Case %d: %s\n",kase,flag?"Yes":"No");
N.clear();
kase++;
}
return 0;
}

附:Warshall算法的传递闭包

例:POJ2253  Frogger

Description

Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sitting on another stone. He plans to visit her, but since the water is dirty and full of tourists' sunscreen, he wants to avoid swimming and instead reach her by jumping. 
Unfortunately Fiona's stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps. 
To execute a given sequence of jumps, a frog's jump range obviously must be at least as long as the longest jump occuring in the sequence. 
The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones. 

You are given the coordinates of Freddy's stone, Fiona's stone and all other stones in the lake. Your job is to compute the frog distance between Freddy's and Fiona's stone. 

Input

The input will contain one or more test cases. The first line of each test case will contain the number of stones n (2<=n<=200). The next n lines each contain two integers xi,yi (0 <= xi,yi <= 1000) representing the coordinates of stone #i. Stone #1 is Freddy's stone, stone #2 is Fiona's stone, the other n-2 stones are unoccupied. There's a blank line following each test case. Input is terminated by a value of zero (0) for n.

Output

For each test case, print a line saying "Scenario #x" and a line saying "Frog Distance = y" where x is replaced by the test case number (they are numbered from 1) and y is replaced by the appropriate real number, printed to three decimals. Put a blank line after each test case, even after the last one.

Sample Input

2
0 0
3 4 3
17 4
19 4
18 5 0

Sample Output

Scenario #1
Frog Distance = 5.000 Scenario #2
Frog Distance = 1.414

Source

#include <iostream>
#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll;
const int maxn=205;
struct node{
int x,y;
}N[maxn];
int con[maxn][maxn],n;
double G[maxn][maxn];
void floyed() //枚举所有边进行松弛;
{
for(int k=0;k<n;k++)
for(int i=0;i<n;i++)
for(int j=0;j<n;j++) //松弛为最大边的最小值;
G[i][j]=min(G[i][j],max(G[i][k],G[k][j]));
}
int main()
{
int kase=0;
while(~scanf("%d",&n),n)
{
for(int i=0;i<n;i++)
scanf("%d%d",&N[i].x,&N[i].y);
for(int i=0;i<n;i++) //这样对称的邻接矩阵只须计算一半
for(int j=i+1;j<n;j++)
G[i][j]=G[j][i]=(double)sqrt(double(N[i].x-N[j].x)*(N[i].x-N[j].x)+double(N[i].y-N[j].y)*(N[i].y-N[j].y));
floyed();
printf("Scenario #%d\n",++kase);
printf("Frog Distance = %.3lf\n\n",G[0][1]);
}
return 0;
}

二、Dijkstra算法

#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
const int maxn=1005;
const int inf=0x3f3f3f3f;
int n;
struct node{
int x,y;
}N[maxn];
bool vis[maxn];
double G[maxn][maxn],d[maxn]; //邻接矩阵
void Dijkstra()
{
fill(vis,vis+n,false);
fill(d,d+n,inf);
d[0]=0;
while(true)
{
int v=-1;
for(int i=0;i<n;i++)
if(!vis[i]&&(v==-1||d[i]<d[v])) //从尚未使用过的顶点中选取一个最小值;
v=i;
if(v==-1)
break;
vis[v]=true;
for(int i=0;i<n;i++)
d[i]=min(d[i],max(d[v],G[v][i])); //源点到各点的最长边的最小值;
}
}
int main()
{
int kase=0;
while(~scanf("%d",&n),n)
{
for(int i=0;i<n;i++)
scanf("%d%d",&N[i].x,&N[i].y);
for(int i=0;i<n;i++) //这样对称的邻接矩阵只须计算一半
for(int j=i+1;j<n;j++)
G[i][j]=G[j][i]=(double)sqrt(double(N[i].x-N[j].x)*(N[i].x-N[j].x)+double(N[i].y-N[j].y)*(N[i].y-N[j].y));
Dijkstra();
printf("Scenario #%d\n",++kase);
printf("Frog Distance = %.3f\n\n",d[1]);
}
return 0;
}

三、Bellman-Ford算法

四、SPFA算法(Shortest Path Faster Algorithm)

队列优化的bellman-ford;

例:POJ1874  畅通工程续

Problem Description
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。

现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
 
Input
本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
 
Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
 
Sample Input
3 3
0 1 1
0 2 3
1 2 1
0 2
3 1
0 1 1
1 2
 
Sample Output
2
-1
 
Author
linle
 
Source
解法1:spfa  2.floyed  3.dijkstra
#include <iostream>
#include <queue>
#include <cstdio>
#include <vector>
using namespace std;
const int maxn=205;
const int inf=0x3f3f3f3f;
typedef pair<int,int> p;
vector<p>E[maxn];//邻接表;
int n,m,d[maxn],inq[maxn]; //d[maxn]到源点的最短距离,inq[maxn]在队列里的元素;
void init()
{
for(int i=0;i<n;i++)E[i].clear();
for(int i=0;i<n;i++)inq[i]=0;
for(int i=0;i<n;i++)d[i]=inf;
}
void spfa(int x)
{
queue<int> que;
que.push(x),d[x]=0,inq[x]=1;
while(!que.empty())
{
int now=que.front();
que.pop();
inq[now]=0;
for(int i=0;i<E[now].size();i++)
{
int v=E[now][i].first;
if(d[v]>d[now]+E[now][i].second)
{
d[v]=d[now]+E[now][i].second;
if(inq[v]==0){
inq[v]=1;
que.push(v);
}
}
}
}
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
init();
int a,b,c;
for(int i=0;i<m;i++)
{
scanf("%d%d%d",&a,&b,&c);
E[a].push_back(p(b,c));
E[b].push_back(p(a,c));
}
scanf("%d%d",&a,&b);
spfa(a);
if(d[b]==inf)
cout << -1 << endl;
else
cout << d[b] << endl;
}
return 0;
}
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn=205;
const int inf=0x3f3f3f3f;
int n,m,maze[maxn][maxn]; void floyed()
{
for(int k=0;k<n;k++)
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
if(i!=j&&j!=k&&k!=i)
maze[i][j]=min(maze[i][j],maze[i][k]+maze[k][j]);
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
int a,b,c;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
{
if(i!=j)
maze[i][j]=inf;
}
for(int i=0;i<m;i++)
{
scanf("%d%d%d",&a,&b,&c);
maze[a][b]=min(c,maze[a][b]);//处理解决重边问题;
maze[b][a]=min(c,maze[b][a]);
}
scanf("%d%d",&a,&b);
floyed();
if(maze[a][b]==inf)
cout << -1 << endl;
else
cout << maze[a][b] <<endl;
}
return 0;
}

//自我整理:最短路径的这三个算法,就像BFS一样;
//spfa:每次把发生更新的点作为当前到该点的最短路径,都入队列视为下一次遍历开始的源点;
//dijkstra:每次只取所有发生更新的点,即所有当前最短路径中里离源点最近的点作为下一次开始的源点,前面的值都视为已确定的最短路径

最短路(Floyed、Dijkstra、Bellman-Ford、SPFA)的更多相关文章

  1. HDOJ 2544 最短路(最短路径 dijkstra算法,SPFA邻接表实现,floyd算法)

    最短路 Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  2. 蓝桥杯 algo_5 最短路 (bellman,SPFA)

    问题描述 给定一个n个顶点,m条边的有向图(其中某些边权可能为负,但保证没有负环).请你计算从1号点到其他点的最短路(顶点从1到n编号). 输入格式 第一行两个整数n, m. 接下来的m行,每行有三个 ...

  3. Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化)

    Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化) 贝西在田里,想在农夫约翰叫醒她早上挤奶之前回到谷仓尽可能多地睡一觉.贝西需要她的美梦,所以她想尽快回 ...

  4. hdoj 2544 最短路【dijkstra or spfa】

    最短路 Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  5. 【最短路算法】Dijkstra+heap和SPFA的区别

    单源最短路问题(SSSP)常用的算法有Dijkstra,Bellman-Ford,这两个算法进行优化,就有了Dijkstra+heap.SPFA(Shortest Path Faster Algori ...

  6. ACM/ICPC 之 最短路径-Bellman Ford范例(POJ1556-POJ2240)

    两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可 ...

  7. poj1860 bellman—ford队列优化 Currency Exchange

    Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22123   Accepted: 799 ...

  8. Bellman - Ford 算法解决最短路径问题

    Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...

  9. uva 558 - Wormholes(Bellman Ford判断负环)

    题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...

  10. 最短路计数——Dijkstra

    题目: 给出一个N个顶点M条边的无向无权图,顶点编号为1−N.问从顶点1开始,到其他每个点的最短路有几条. ——传送门 受到题解的启发,用 Dijkstra A掉(手工代码) 思路: 1.无向无权图, ...

随机推荐

  1. 【Python】Python3环境安装

    编译安装 安装依赖 yum install wget gcc make zlib-devel openssl openssl-devel readline-devel wget "https ...

  2. Less-4 报错注入

    补坑:报错注入 当我们 union 无法注入的时候,可以使用报错注入,这里我们有三种报错注入,xpth语法错误和count()+rand()+floor()+group by重复组建错误 extrac ...

  3. jQuery下载步骤以及相关使用

    jQuery下载 进入相关网址执行下载操作,网址在这里:http://www.jq22.com/jquery-info122 进入页面之后,页面的左侧,会有这样的显示: 我们需要自主在这里选择自己需要 ...

  4. DNS BIND之dnssec安全

    公司一大早域名解析出问题了,网抓项目都无法抓取到进销存数据. 查询后发现是运维周末重启了dns服务. 网上找到的解决方法: 在BIND的配置文件(/etc/named.conf)中打开DNSSEC选项 ...

  5. 面向对象分析与设计(V3)第一章:复杂性

    书名(中):面向对象分析与设计 书名(英):Object-Oriented Analysis and Design with Applications 作者:Grady Booch等 第一部分.概念 ...

  6. MyBatis 重点知识归纳

    一.MyBatis 简介 [1]MyBatis 是支持定制化 SQL,存储过程以及高级映射的优秀持久化框架.[2]MyBatis 避免了几乎所有的 JDBC 代码和手动设置参数以及获取查询结果集.[3 ...

  7. JVM加载中初始化时机?什么时候不会进行初始化?

    初始化的过程是给静态变量赋予指定值以及执行静态代码块的过程. 当遇到new,getstatic,putstatic,invokestatic指令时要进行初始化,也就是new实例化对象,调用静态变量以及 ...

  8. Moho Pro - Mac 上一款专业的二维动画制作软件,强大的功能让你尽情发挥创意

    Moho,以前被称为动画工作室专业版,是最好的质量的2D动画软件之一.这个程序是理想的专业人士寻找一个更有效的替代方法来创建动画,没有繁琐的详细逐帧处理.具有直观的界面和现成的人物和附加对象(卡通对象 ...

  9. 原来还能这样看Java线程的状态及转换

    作者:小牛呼噜噜 | https://xiaoniuhululu.com 计算机内功.JAVA底层.面试.职业成长相关资料等更多精彩文章在公众号「小牛呼噜噜」 大家好,我是呼噜噜,最近一直在梳理Jav ...

  10. PHP微信三方平台-代公众号发送消息模板

    1.微信三方平台代公众号实现业务接口API文档地址: https://developers.weixin.qq.com/doc/oplatform/Third-party_Platforms/Offi ...