SETTLE约束算法中的坐标变换问题
技术背景
在之前的两篇文章中,我们分别讲解了SETTLE算法的原理和基本实现和SETTLE约束算法的批量化处理。SETTLE约束算法在水分子体系中经常被用到,该约束算法具有速度快、可并行、精度高的优点。本文我们需要探讨的是该约束算法中的一个细节,问题是这样定义的,给定坐标系\(XYZ\)下的两个已知三角形\(\Delta A_0B_0C_0\)和三角形\(\Delta A_1B_1C_1\),以三角形\(\Delta A_0B_0C_0\)构造一个平面\(\pi_0\),将\(\pi_0\)平移到三角形\(\Delta A_1B_1C_1\)的质心位置,作为新坐标系的\(X'Y'\)平面,再使得\(Y'Z'\)平面过\(A_1\)点,以此来构造一个新的坐标系\(X'Y'Z'\),求两个坐标系之间的变换。
理论推导
坐标系\(OXYZ\)和\(O'X'Y'Z'\)之间的变换,只有平移和旋转,没有伸缩。那么关于平移的部分,我们只需要考虑两个原点位置之间的向量差即可。而旋转部分,需要一些技巧,至少我们需要找到三个合适的点用于计算这个旋转矩阵。比如说,假定三角形\(\Delta A_1B_1C_1\)在坐标系\(OXYZ\)和\(O'X'Y'Z'\)之中的位置都是已知的,那么我们就可以按照下述公式来计算旋转矩阵\(R\):
\begin{matrix}
X_A && X_B && X_C\\
Y_A && Y_B && Y_C\\
Z_A && Z_B && Z_C
\end{matrix}
\right]=
\left[
\begin{matrix}
X'_A && X'_B && X'_C\\
Y'_A && Y'_B && Y'_C\\
Z'_A && Z'_B && Z'_C
\end{matrix}
\right]
\]
然后在等式两边各乘上一个逆矩阵就可以得到旋转矩阵:
\begin{matrix}
X'_A && X'_B && X'_C\\
Y'_A && Y'_B && Y'_C\\
Z'_A && Z'_B && Z'_C
\end{matrix}
\right]\left[
\begin{matrix}
X_A && X_B && X_C\\
Y_A && Y_B && Y_C\\
Z_A && Z_B && Z_C
\end{matrix}
\right]^{-1}
\]
然而不幸的是,我们并不能直接得到三角形\(\Delta A_1B_1C_1\)在坐标系\(O'X'Y'Z'\)之中的位置,这需要一些计算。因此,我们可以考虑另辟蹊径,找其他更容易计算的三个向量,用来计算我们所需要的旋转矩阵。
第一个向量
我们找的第一个向量是\(Z'\)轴,或者用向量表示就是\(\vec{O'Z'}=[0, 0, 1]^T\),因为\(Z'\)轴跟平面\(\pi_0\)是垂直的关系,也就是垂直于三角形\(\Delta A_0B_0C_0\)。因此对应的可以用三角形\(\Delta A_0B_0C_0\)的任意两条边的外积来计算向量\(\vec{O'Z'}=R\cdot[\vec{A_0B_0}\times \vec{A_0C_0}]\)(注意做归一化处理)。
第二个向量
如果分别用\(D_1\)和\(D'_1\)来表示三角形\(\Delta A_1B_1C_1\)在坐标系\(OXYZ\)和坐标系\(O'X'Y'Z'\)下的质心位置。这里我们找的第二个向量,就是\(\vec{D'_1A'_1}\)。这里因为\(A'_1\)点在\(Y'Z'\)平面上,因此\(X'_{A'_1}=0\)。而向量\(\vec{D'_1A'_1}\)和\(Z'\)轴的夹角,我们可以在坐标系\(OXYZ\)下计算:
\]
计算出来夹角之后,就可以得到\(\vec{D'_1A'_1}=[0, sin\theta, cos\theta]^T\),即:\(\vec{D'_1A'_1}=R\cdot\vec{D_1A_1}\)。
第三个向量
到这一步为止,其实我们还是没有计算出\(\vec{D'_1B'_1}\)和\(\vec{D'_1C'_1}\)的值,因此我们第三个向量,在前两个向量的基础之上,用叉乘的方法再构造一个\(X'\)轴的向量,即\(\vec{O'X'}=[1, 0, 0]^T\),旋转矩阵计算方法为:
\]
小结
这样一来,我们就得到了三个向量在两个坐标系下的坐标,可以用于建立方程组,计算两个坐标之间的变换关系,如果写成矩阵乘法形式就是:
\begin{matrix}
0&&0&&1\\
0&&\sqrt{1-(\frac{(\vec{A_0B_0}\times \vec{A_0C_0})\cdot\vec{D_1A_1}}{|\vec{A_0B_0}\times \vec{A_0C_0}|\cdot|\vec{D_1A_1}|})^2}&&0\\
1&&\frac{(\vec{A_0B_0}\times \vec{A_0C_0})\cdot\vec{D_1A_1}}{|\vec{A_0B_0}\times \vec{A_0C_0}|\cdot|\vec{D_1A_1}|}&&0
\end{matrix}
\right]\left(\left[
\begin{matrix}
\vec{A_0B_0}\times \vec{A_0C_0}\\
\vec{D_1A_1}\\
(\vec{A_0B_0}\times \vec{A_0C_0})\times \vec{D_1A_1}
\end{matrix}
\right]^{T}\right)^{-1}
\]
代码实现
这里先提一下代码实现和测试的思路。我们首先用Python来构造2个三角形,得到一个新的三角形。然后我们再根据上述的公式,计算得到一个坐标旋转矩阵。最后我们再输入一些便于手动计算的点(或者是直接用前面三角形的三个角,或者是中间的一些向量都是可以的),用旋转矩阵进行变换,来测试一下是否我们所需要的坐标变换之后的结果。
In [1]: import numpy as np
In [2]: T0 = np.array([[0, 0, 1], [0, -1, 0],[0, 1, 0]], np.float32)
In [3]: T1 = np.array([[1, 0, 1], [0, -1, 0], [0, 1, 0]], np.float32)
In [4]: D0 = np.mean(T0, axis=-2)
In [5]: D1 = np.mean(T1, axis=-2)
In [6]: A0B0 = T0[1]-T0[0]
In [7]: A0C0 = T0[2]-T0[0]
In [8]: v0 = np.cross(A0B0, A0C0)
In [9]: v0 /= np.linalg.norm(v0)
In [10]: v1 = T1[0]-D1
In [11]: v1 /= np.linalg.norm(v1)
In [12]: v2 = np.cross(v0, v1)
In [13]: v2 /= np.linalg.norm(v2)
In [14]: M1 = np.vstack((v0, v1, v2))
In [15]: M1 = M1.T
In [16]: iM1 = np.linalg.inv(M1)
In [17]: cost = np.dot(v0, v1)/np.linalg.norm(v0)/np.linalg.norm(v1)
In [18]: M0 = np.array([[0, 0, 1], [0, np.sqrt(1 - cost**2), 0], [1, cost, 0]])
In [19]: R = np.dot(M0, iM1)
In [20]: R
Out[20]:
array([[ 0.00000000e+00, -1.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 9.99999916e-01],
[ 1.00000000e+00, 0.00000000e+00, 5.00651538e-08]])
In [21]: np.dot(R, v0)
Out[21]: array([0., 0., 1.])
In [22]: np.dot(R, v1)
Out[22]: array([0. , 0.70710671, 0.7071068 ])
In [23]: np.dot(R, v2)
Out[23]: array([1., 0., 0.])
In [24]: np.dot(R, T1[0]-D1)
Out[24]: array([0. , 0.66666657, 0.66666666])
In [25]: np.dot(R, T1[1]-D1)
Out[25]: array([ 1. , -0.33333332, -0.33333336])
In [26]: np.dot(R, T1[2]-D1)
Out[26]: array([-1. , -0.33333332, -0.33333336])
上面这个案例的流程是这样的,我们先创建两个不一样大小的绿色三角形和红色三角形,我们将要做的事情是以绿色三角形为\(X'Y'\)平面,红色三角形的质心为原点,并使得\(Y'Z'\)平面过\(A_1\)点,以此来构造一个新的坐标系,并计算前后两个坐标系之间的变换。

这里需要一些空间想象能力,我们可以先将绿色的三角形平面平移到过红色三角形的质心位置,同时将坐标系原点移动到红色三角形的质心位置,再旋转坐标轴,使得\(Y'Z'\)平面过\(A_1\)点。这样一来通过上一个章节中的旋转矩阵的构造方法,我们就可以计算出所有的向量在两个坐标系下的旋转变换。

当然,需要注意的是,这个变换只是一个旋转变换,由于坐标系发生了平移,所以需要有一个固定的参考点,才能够精确的得到某一个给定的点的坐标变换。比如我们上述python代码中的24、25、26都是对红色三角形的三个顶点关于质心的相对位置的坐标变换,在坐标变换前后,顶点坐标都需要减去质心的坐标。
总结概要
在已知两个三角形顶点坐标的情况下,我们要以其中的一个三角形平面去构造一个新的坐标系,并且需要找到新旧坐标系之间的变换关系。这是一个比较简单的立体几何的问题,寻找两个坐标系之间的变换矩阵。如果是常规思路,可以先根据两个三角形之间的相对位置去计算一下在新坐标系下两个三角形的新的顶点坐标,从而可以取三个点来构造一个坐标变换矩阵,进而推广到所有向量在这两个坐标系之间的变换关系。而本文提供了一种相对更容易求解、也比较直接的思路,并给出了相关的Python代码实现过程。
版权声明
本文首发链接为:https://www.cnblogs.com/dechinphy/p/xyz-transform.html
作者ID:DechinPhy
更多原著文章请参考:https://www.cnblogs.com/dechinphy/
打赏专用链接:https://www.cnblogs.com/dechinphy/gallery/image/379634.html
腾讯云专栏同步:https://cloud.tencent.com/developer/column/91958
CSDN同步链接:https://blog.csdn.net/baidu_37157624?spm=1008.2028.3001.5343
51CTO同步链接:https://blog.51cto.com/u_15561675
SETTLE约束算法中的坐标变换问题的更多相关文章
- 分子动力学模拟之SETTLE约束算法
技术背景 在上一篇文章中,我们讨论了在分子动力学里面使用LINCS约束算法及其在具备自动微分能力的Jax框架下的代码实现.约束算法,在分子动力学模拟的过程中时常会使用到,用于固定一些既定的成键关系.例 ...
- SETTLE约束算法的批量化处理
技术背景 在上一篇文章中,我们介绍了在分子动力学模拟中SETTLE约束算法的实现与应用,其中更多的是针对于单个的水分子.但由于相关代码是通过jax这一框架来实现的,因此对于多分子的体系,可以采用jax ...
- 差分约束算法————洛谷P4878 [USACO05DEC] 布局
题目: 不难看出题意主要是给出ml+md个格式为xi-xj<=ak的不等式,xi-xj为i,j俩头牛的距离,要我们求x1-xn的最大值. 经过上下加减我们可以将这几个不等式化成x1-xn< ...
- P5960 差分约束算法模板
差分约束 差分约束,一般用来解决有\(n\)个未知数,\(m\)个不等式方程的问题,形如: \[\begin{cases} \ x_{a_1}-x_{b_1}\leq y_1\\ \ x_{a_2}- ...
- KMP算法中next函数的理解
首先要感谢http://blog.csdn.net/v_july_v/article/details/7041827以及http://blog.chinaunix.net/uid-27164517-i ...
- 简明解释算法中的大O符号
伯乐在线导读:2009年1月28日Arec Barrwin在StackOverflow上提问,“有没有关于大O符号(Big O notation)的简单解释?尽量别用那么正式的定义,用尽可能简单的数学 ...
- 一步一步写算法(之prim算法 中)
原文:一步一步写算法(之prim算法 中) [ 声明:版权所有,欢迎转载,请勿用于商业用途. 联系信箱:feixiaoxing @163.com] C)编写最小生成树,涉及创建.挑选和添加过程 MI ...
- TextRank:关键词提取算法中的PageRank
很久以前,我用过TFIDF做过行业关键词提取.TFIDF仅仅从词的统计信息出发,而没有充分考虑词之间的语义信息.现在本文将介绍一种考虑了相邻词的语义关系.基于图排序的关键词提取算法TextRank [ ...
- 问题 1690: 算法4-7:KMP算法中的模式串移动数组
题目链接:https://www.dotcpp.com/oj/problem1690.html 题目描述 字符串的子串定位称为模式匹配,模式匹配可以有多种方法.简单的算法可以使用两重嵌套循环,时间复杂 ...
随机推荐
- 彰显个性│制作一个独一无二的动态 svg 头像
一.头像预览 看一下博主的动态图像,是不是很炫酷,想不想拥有一个? 这是一个 svg 图片,svg 图片不仅可以通过制图软件制作外,其实也可以通过代码进行开发 因为 svg 本质上是一个下 xml 文 ...
- CLOSE_WAIT过多解决方法
背景:windows server 现象:CLOSE_WAIT过多(几百个),导致端口被占用光了,其他服务无法运行 原因:由于KeepLive在Windows操作系统下默认是7200秒,也就是2个小时 ...
- c# sqlsugar,hisql,freesql orm框架全方位性能测试对比 sqlserver 性能测试
在2022年1月份本人做过一次sqlsugar,hisql,freesql三个框架的性能测试,上次主要是测的sqlserver下的常规插入(非bulkcopy的方式数据插入),hisql与目前比较流行 ...
- Python Excel 操作
1.Excel Code import os import time import re import win32com.client def dealpath(pathname='') -> ...
- zabbix监控mysql主从同步
获取主从复制sql线程和I/O线程状态是否为yes #!/bin/bash HOSTNAME="数据库IP" PORT="端口" USERNAME=" ...
- 使用Karmada实现Helm应用的跨集群部署
摘要:借助Karmada原生API的支持能力,Karmada可以借助Flux轻松实现Helm应用的跨集群部署. 本文分享自华为云社区< 使用Karmada实现Helm应用的跨集群部署[云原生开源 ...
- 用Bootstrap4写了一个WordPress主题Writing
这是一个简洁的WordPress博客主题,为专注写作而设计. 本主题使用Bootstrap4框架开发. 主要功能 自适应: 标签云页面模板: 两栏设计: 全宽页面模板: 支持设置背景色和背景图片: 8 ...
- 一种新的UI测试方法:视觉感知测试
什么是视觉测试 视觉测试(Visual Testing),主要检查软件用户界面(UI)是否正确显示给所有用户.它检查网页上的每个元素的形状.大小和位置是否符合预期,还检查这些元素是否在不同的设备和浏览 ...
- 5-11 Redis缓存 | 持久化 | 集群_哨兵_主从复制_读写分离
Redis 强化 缓存淘汰策略 Redis服务器繁忙时,有大量信息要保存 如果Redis服务器内存全满,再要往Redis中保存新的数据,就需要淘汰老数据,才能保存新数据 noeviction:返回错误 ...
- RabbitMQ细说之开篇
前言 关于消息中间件的应用场景,小伙伴们应该都耳熟能详了吧,比如经常提到的削峰填谷.分布式事务.异步业务处理.大数据分析等等,分布式消息队列成为其中比较关键的桥梁,也就意味着小伙伴们得掌握相关技能:当 ...