「学习笔记」单调队列优化dp
算法
使用单调队列优化dp 废话
对与一些dp的转移方程,我们可以通过拆使它与某个区间的最值相关。
这时可以用单调队列算出区间最值,进行优化。
例题
最大子段和
题意
给出一个长度为 \(n\) 的整数序列,从中找出一段长度不超过 \(m\) 的连续子序列,使得整个序列的和最大。
思路
设 \(sum_i\) 为 \(i\) 的前缀和,易得答案为:
\]
其中 \(\min_\limits{i-m\le k\le i-1}\{sum_k\}\) 这部分可以用单调队列快速求出。
那么算起来就变得简单多了。
代码
点击查看代码
#include<bits/stdc++.h>
#define _for(i,a,b) for(int i=a;i<=b;++i)
#define for_(i,a,b) for(int i=a;i>=b;--i)
#define ll long long
using namespace std;
const int N=3e5+10;
int n,m,a[N],sum[N],f[N],ans;
int q[N],h=1,t=0;
inline int rnt(){
int x=0,w=1;char c=getchar();
while(c<'0'||c>'9'){if(c=='-')w=-1;c=getchar();}
while(c>='0'&&c<='9')x=(x<<3)+(x<<1)+(c^48),c=getchar();
return x*w;
}
void tmp(int k){
while(h<=t&&q[h]<k-m)++h;
ans=max(ans,sum[k]-sum[q[h]]);
while(h<=t&&sum[q[t]]>sum[k])--t;
q[++t]=k;
}
int main(){
n=rnt(),m=rnt();
_for(i,1,n){
a[i]=rnt();
sum[i]=sum[i-1]+a[i];
tmp(i);
}
printf("%d\n",ans);
return 0;
}
修剪草坪
题意
给定一个 \(n\ (1\le n\le 10^5)\) 个元素的序列,可任选多个数,要求任意一段连续选的数长度不能超过 \(k\)。
\(1\le N\le 10^5\)
思路
设 \(f_{i,0/1}\) 表示第 \(i\) 个数选(1)或是不选(0),\(sum_i\) 表示 \(i\) 的前缀和。
转移方程为:
f_{i,1}=\max_\limits{i-k\le j<i}\{f_{j,0}+(sum_i-sum_j)\}
\]
\(f_{i,1}\) 转移方程可以拆成:
\]
用单调队列维护 \(f_{j,0}-sum_j\) 即可。
代码
点击查看代码
#include<bits/stdc++.h>
#define _for(i,a,b) for(ll i=a;i<=b;++i)
#define for_(i,a,b) for(ll i=a;i>=b;--i)
#define ll long long
using namespace std;
const ll N=3e5+10;
ll n,k,a[N],sum[N],f[N][2],ans;
ll q[N],h=1,t=0;
inline ll rnt(){
ll x=0,w=1;char c=getchar();
while(c<'0'||c>'9'){if(c=='-')w=-1;c=getchar();}
while(c>='0'&&c<='9')x=(x<<3)+(x<<1)+(c^48),c=getchar();
return x*w;
}
void tmp(ll i){
while(h<=t&&q[h]<i-k)++h;
f[i][1]=f[q[h]][0]+sum[i]-sum[q[h]];
while(h<=t&&f[q[t]][0]-sum[q[t]]<f[i][0]-sum[i])--t;
q[++t]=i;
}
int main(){
n=rnt(),k=rnt();
tmp(0);
_for(i,1,n){
a[i]=rnt();
sum[i]=sum[i-1]+a[i];
f[i][0]=max(f[i-1][0],f[i-1][1]);
tmp(i);
}
printf("%lld\n",max(f[n][0],f[n][1]));
return 0;
}
瑰丽华尔兹
题意
给出一个 \(N*M\) 的船上地图,有空地也有家具。
船上有 \(K\) 段时间,在每段时间都会往不同的方向倾斜,钢琴也会朝着那个方向倾斜,但不允许碰上家具。
求钢琴最长的滑行距离。
\(1\le N,M\le200,K\le200\)
思路
设 \(f_{i,j,k}\) 表示在第 \(i\) 段时间滑行到 \(j,k\) 的位置。
那么转移方程就是:
\]
瞎写的
按着倾斜的方向遍历,再用单调队列优化优化就好了。
代码
点击查看代码
#include<bits/stdc++.h>
#define _for(i,a,b) for(int i=a;i<=b;++i)
#define for_(i,a,b) for(int i=a;i>=b;--i)
#define ll long long
using namespace std;
const int N=210,inf=0x3f3f3f3f;
int n,m,x,y,k,mp[N][N];
int f[N][N][N],la[N][N][N],ans;
inline ll rnt(){
ll x=0,w=1;char c=getchar();
while(c<'0'||c>'9'){if(c=='-')w=-1;c=getchar();}
while(c>='0'&&c<='9')x=(x<<3)+(x<<1)+(c^48),c=getchar();
return x*w;
}
inline char rch(){
char c=getchar();
while(c!='.'&&c!='x')c=getchar();
return c;
}
struct dq{//deque
int q[N],h,t;
void nw(){
memset(q,0,sizeof(q));
h=1,t=0;
}
bool empty(){return h>t;}
int front(){return q[h];}
int back(){return q[t];}
void pop_f(){++h;}
void pop_b(){--t;}
void push(int x){q[++t]=x;}
};
void dp(int d,int s,int t,int fx){
int len=(t-s+1);
if(fx==1){
_for(j,1,m){
dq q;q.nw();
for_(i,n,1){
if(mp[i][j]){
while(!q.empty())q.pop_f();
continue;
}
while(!q.empty()&&q.front()>i+len)q.pop_f();
while(!q.empty()&&f[d-1][q.back()][j]+q.back()-i<f[d-1][i][j])q.pop_b();
q.push(i);
if(f[d-1][q.front()][j]>-1)
f[d][i][j]=f[d-1][q.front()][j]+q.front()-i;
ans=max(ans,f[d][i][j]);
}
}
}
else if(fx==2){
_for(j,1,m){
dq q;q.nw();
_for(i,1,n){
if(mp[i][j]){
while(!q.empty())q.pop_f();
continue;
}
while(!q.empty()&&q.front()<i-len)q.pop_f();
while(!q.empty()&&f[d-1][q.back()][j]+i-q.back()<f[d-1][i][j])q.pop_b();
q.push(i);
if(f[d-1][q.front()][j]>-1)
f[d][i][j]=f[d-1][q.front()][j]+i-q.front();
ans=max(ans,f[d][i][j]);
}
}
}
else if(fx==3){
_for(i,1,n){
dq q;q.nw();
for_(j,m,1){
if(mp[i][j]){
while(!q.empty())q.pop_f();
continue;
}
while(!q.empty()&&q.front()>j+len)q.pop_f();
while(!q.empty()&&f[d-1][i][q.back()]+q.back()-j<f[d-1][i][j])q.pop_b();
q.push(j);
if(f[d-1][i][q.front()]>-1)
f[d][i][j]=f[d-1][i][q.front()]+q.front()-j;
ans=max(ans,f[d][i][j]);
}
}
}
else{
_for(i,1,n){
dq q;q.nw();
_for(j,1,m){
if(mp[i][j]){
while(!q.empty())q.pop_f();
continue;
}
while(!q.empty()&&q.front()<j-len)q.pop_f();
while(!q.empty()&&f[d-1][i][q.back()]+j-q.back()<f[d-1][i][j])q.pop_b();
q.push(j);
if(f[d-1][i][q.front()]>-1)
f[d][i][j]=f[d-1][i][q.front()]+j-q.front();
ans=max(ans,f[d][i][j]);
}
}
}
}
int main(){
n=rnt(),m=rnt(),x=rnt(),y=rnt(),k=rnt();
_for(i,1,n)
_for(j,1,m)
mp[i][j]=(bool)(rch()=='x');
memset(f,-inf,sizeof(f));
f[0][x][y]=0;
_for(i,1,k){
int s=rnt(),t=rnt(),fx=rnt();
dp(i,s,t,fx);
}
printf("%d\n",ans);
return 0;
}
股票交易
题意
一共有 \(T\) 天,知道了每天股票的买入金额 \(ap_i\),卖出金额 \(bp_i\),买入限制 \(as_j\),卖出限制 \(bs_j\)。要求持有股票数不能超过 \(MaxP\) ,两次交易相隔 \(w\) 天。
\(1\le w<T\le 2*10^3,1\le MaxP\le 2*10^3\)
思路
设 \(f_{i,j}\) 表示第 \(i\) 天持有 \(j\) 个股票的最大钱数。
有四种情况:
- 凭空买
转移方程:
\]
- 不买不卖
转移方程:
\]
- 只买
转移方程:
\]
- 只卖
转移方程:
\]
此时时间复杂度是 \(O(T*MaxP^2)\)。
观察只买和只卖的情况,可以发现它们的转移方程可以用单调队列优化掉一维。
那么时间复杂度就被优化成了 \(O(T*MaxP)\),完全可过。
代码
点击查看代码
#include<bits/stdc++.h>
#define _for(i,a,b) for(ll i=a;i<=b;++i)
#define for_(i,a,b) for(ll i=a;i>=b;--i)
#define ll long long
using namespace std;
const ll N=4010,inf=0x3f3f3f3f;
ll t,mxp,w,ap[N],bp[N],as[N],bs[N];
inline ll rnt(){
ll x=0,w=1;char c=getchar();
while(c<'0'||c>'9'){if(c=='-')w=-1;c=getchar();}
while(c>='0'&&c<='9')x=(x<<3)+(x<<1)+(c^48),c=getchar();
return x*w;
}
struct dq{//deque
ll q[N],h,t;
void nw(){
memset(q,0,sizeof(q));
h=1,t=0;
}
bool empty(){return h>t;}
ll front(){return q[h];}
ll back(){return q[t];}
void pop_f(){++h;}
void pop_b(){--t;}
void push(int x){q[++t]=x;}
};
namespace SOLVE{
ll f[N][N];
void DpPkm(ll i){//凭空买
_for(j,0,min(mxp,as[i]))
f[i][j]=-ap[i]*j;
return;
}
void DpBmbm(ll i){//不买也不卖
_for(j,0,mxp)
f[i][j]=max(f[i][j],f[i-1][j]);
return;
}
void DpBuy(ll i){//原基础上买来
dq q;q.nw();
_for(j,0,mxp){
while(!q.empty()&&j-q.front()>as[i])q.pop_f();
while(!q.empty()&&f[i-w-1][j]>f[i-w-1][q.back()]-(j-q.back())*ap[i])q.pop_b();
q.push(j);
f[i][j]=max(f[i][j],f[i-w-1][q.front()]-(j-q.front())*ap[i]);
}
return;
}
void DpSell(ll i){//原基础上卖出
dq q;q.nw();
for_(j,mxp,0){
while(!q.empty()&&q.front()-j>bs[i])q.pop_f();
while(!q.empty()&&f[i-w-1][j]>f[i-w-1][q.back()]+(q.back()-j)*bp[i])q.pop_b();
q.push(j);
f[i][j]=max(f[i][j],f[i-w-1][q.front()]+(q.front()-j)*bp[i]);
}
return;
}
ll Solve(){
memset(f,-inf,sizeof(f));
_for(i,1,t){
DpPkm(i);
DpBmbm(i);
if(i-w>1){
DpBuy(i);
DpSell(i);
}
}
return f[t][0];
}
}
int main(){
t=rnt(),mxp=rnt(),w=rnt();
_for(i,1,t)
ap[i]=rnt(),bp[i]=rnt(),as[i]=rnt(),bs[i]=rnt();
printf("%lld\n",SOLVE::Solve());
return 0;
}/*
*/
$$
\Huge{\mathfrak{The\ End}}
$$
「学习笔记」单调队列优化dp的更多相关文章
- 「学习笔记」FFT 之优化——NTT
目录 「学习笔记」FFT 之优化--NTT 前言 引入 快速数论变换--NTT 一些引申问题及解决方法 三模数 NTT 拆系数 FFT (MTT) 「学习笔记」FFT 之优化--NTT 前言 \(NT ...
- bzoj1499: [NOI2005]瑰丽华尔兹&&codevs1748 单调队列优化dp
这道题 网上题解还是很多很好的 强烈推荐黄学长 码风真的好看 神犇传送门 学习学习 算是道单调队列优化dp的裸题吧 #include<cstdio> #include<cstring ...
- 「单调队列优化DP」P2034 选择数字
「单调队列优化DP」P2034 选择数字 题面描述: 给定一行n个非负整数a[1]..a[n].现在你可以选择其中若干个数,但不能有超过k个连续的数字被选择.你的任务是使得选出的数字的和最大. 输入格 ...
- 【笔记篇】单调队列优化dp学习笔记&&luogu2569_bzoj1855股票交♂易
DP颂 DP之神 圣洁美丽 算法光芒照大地 我们怀着 崇高敬意 跪倒在DP神殿里 你的复杂 能让蒟蒻 试图入门却放弃 在你光辉 照耀下面 AC真心不容易 dp大概是最经久不衰 亘古不化的算法了吧. 而 ...
- 算法笔记--单调队列优化dp
单调队列:队列中元素单调递增或递减,可以用双端队列实现(deque),队列的前面和后面都可以入队出队. 单调队列优化dp: 问题引入: dp[i] = min( a[j] ) ,i-m < j ...
- 【学习笔记】动态规划—斜率优化DP(超详细)
[学习笔记]动态规划-斜率优化DP(超详细) [前言] 第一次写这么长的文章. 写完后感觉对斜优的理解又加深了一些. 斜优通常与决策单调性同时出现.可以说决策单调性是斜率优化的前提. 斜率优化 \(D ...
- Parade(单调队列优化dp)
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2490 Parade Time Limit: 4000/2000 MS (Java/Others) ...
- 1855: [Scoi2010]股票交易[单调队列优化DP]
1855: [Scoi2010]股票交易 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1083 Solved: 519[Submit][Status] ...
- 「学习笔记」FFT 快速傅里叶变换
目录 「学习笔记」FFT 快速傅里叶变换 啥是 FFT 呀?它可以干什么? 必备芝士 点值表示 复数 傅立叶正变换 傅里叶逆变换 FFT 的代码实现 还会有的 NTT 和三模数 NTT... 「学习笔 ...
随机推荐
- 2 万字 + 20张图| 细说 Redis 九种数据类型和应用场景
作者:小林coding 计算机八股文网(操作系统.计算机网络.计算机组成.MySQL.Redis):https://xiaolincoding.com 大家好,我是小林. 我们都知道 Redis 提供 ...
- python亲密数设计
'''亲密数 (如果a的所有正因子和等于b,b的所有正因子和等于a,因子包括1但不包括本身,且a不等于b,则称a,b为亲密数对.一般通过叠代编程求出相应的亲密数对)'''n = 3000def fun ...
- Vue回炉重造之如何使用props、emit实现自定义双向绑定
下面我将使用Vue自带的属性实现简单的双向绑定. 下面的例子就是利用了父组件传给子组件(在子组件定义props属性,在父组件的子组件上绑定属性),子组件传给父组件(在子组件使用$emit()属性定义一 ...
- 实战回忆录:从Webshell开始突破边界
正文 某授权单位的一次渗透,由于使用的php框架,某cms的上传,从实现webshell开始. 详情 添加监听,生成木马文件更改应用程序名称隐藏上线. 修改休眠时间为10秒 查看主机名whoami 抓 ...
- python+requests+yaml实现接口自动化用例(二)---升级版
一.前言:前面一段时间封装的接口自动化测试框架用了一段时间发现还是有很多弊端的,目前又改良了一下,可以说整体思路全都推翻了,功能比之前强大许多,有兴趣的可以私信我单独交流,希望共同学习进步! 二.项目 ...
- WPF双滑块控件以及强制捕获鼠标事件焦点
效果 概述 最近有个小需求要用双滑块表示一个取值范围,于是就简单做了个用户控件,在此记录下. 使用矩形Rectangle表示范围,椭圆Ellipse表示滑块,使用Canvas控制滑块的左右移动. 椭圆 ...
- android stdio开发抖音自动点赞案例
最近做了一个安卓开发自动刷抖音. 点赞. 评论等等养号行为. 总结一下知识点和遇到的一些问题: 知识点: 1. 使用acessibility mode 对抖音自动化操作. android stdio中 ...
- osx系统使用技巧 -- 虚拟机virtualbox
p.p1 { margin: 0; font: 18px Menlo; color: rgba(255, 255, 255, 1); background-color: rgba(102, 130, ...
- 这么强?!Erda MySQL Migrator:持续集成的数据库版本控制
为什么要进行数据库版本控制? 现代软件工程逐渐向持续集成.持续交付演进,软件一次性交付了事的场景逐渐无法满足复杂多变的业务需求,"如何高效地进行软件版本控制"成为我们面临的挑战.同 ...
- flashplayer下载
现在网上不好找,折磨了我好久.这有一个方法,或许能帮到你. 下载地址:https://gitee.com/urain39/adobe-flash_player_sa 官网已经停止更新维护了,连Debu ...