最短路径算法-迪杰斯特拉(Dijkstra)算法在c#中的实现和生产应用
迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径。
它的主要特点是以起始点为中心向外层层扩展(广度优先遍历思想),直到扩展到终点为止
贪心算法(Greedy Algorithm)
贪心算法,又名贪婪法,是寻找最优解问题的常用方法,这种方法模式一般将求解过程分成若干个步骤,但每个步骤都应用贪心原则,选取当前状态下最好/最优的选择(局部最有利的选择),并以此希望最后堆叠出的结果也是最好/最优的解。
Dijkstra推导过程(摘自:https://zhuanlan.zhihu.com/p/346558578)
- 通过Dijkstra计算图G中的最短路径时,需要指定一个起点D(即从顶点D开始计算)。
- 此外,引进两个数组S和U。S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起点D的距离)。
- 初始时,数组S中只有起点D;数组U中是除起点D之外的顶点,并且数组U中记录各顶点到起点D的距离。如果顶点与起点D不相邻,距离为无穷大。
- 然后,从数组U中找出路径最短的顶点K,并将其加入到数组S中;同时,从数组U中移除顶点K。接着,更新数组U中的各顶点到起点D的距离。
- 重复第4步操作,直到遍历完所有顶点。
图解(摘自:https://zhuanlan.zhihu.com/p/346558578)

当我们理解了算法原理后,我们需要明白Dijkstra不能够处理的场景
- 不能处理负权重边(往往找错最短路径,在Dijkstra看来,cost是递增的)
- A-A的绕圈路径查找(需要特殊处理)
代码实战(已经在生产使用)
- 节点对象定义:
public class Edge
{
public int StartNodeID;
public int EndNodeID;
public double Weight;
}
public class Node
{
public int Id { get; set; }
public bool Enable { get; set; }
}
public class NodeItem
{
public bool Used { get; set; }
public List<int> Nodes { get; } = new List<int>();
public int NodeId { get; set; }
public int Index { get; set; }
public double Weight { get; set; }
}
- 初始化图,点,路径集合
public void Initialize(IEnumerable<Edge> edges, IEnumerable<Node> nodes)
{
_edges = edges.ToList();
_nodes = nodes.ToList();
_nodeItems = new List<NodeItem>();
_graph = new double[_nodes.Count(), _nodes.Count()];
foreach (var row in Enumerable.Range(0, _nodes.Count()))
{
var rowNode = _nodes[row];
foreach (var colnum in Enumerable.Range(0, _nodes.Count()))
{
if (row == colnum)
{
_graph[row, colnum] = 0;
continue;
}
var edge = _edges.FirstOrDefault(x =>
x.StartNodeID == rowNode.Id && x.EndNodeID == _nodes[colnum].Id);
_graph[row, colnum] = edge == null ? double.MaxValue : edge.Weight;
}
_nodeItems.Add(new NodeItem()
{
NodeId = _nodes[row].Id,
Index = row,
Weight = double.MaxValue
});
}
}
- 路由主体方法
public Route GetRoute(int startPointID, int endPointID)
{
if (IsRouting)
throw new InvalidOperationException($"can't route.router busy");
IsRouting = true;
Node sNode = null;
Node dNode = null;
try
{
if ((sNode = _nodes.FirstOrDefault(x => x.Id == startPointID)) == null
|| (dNode = _nodes.FirstOrDefault(x => x.Id == endPointID)) == null)
throw new ArgumentNullException("can't found target points.");
_nodeItems.FirstOrDefault(x => x.NodeId == startPointID).Used = true;
_nodeItems.ForEach(x =>
{
x.Weight = GetRowArray(_graph, _nodes.IndexOf(sNode))[x.Index];
x.Nodes.Add(startPointID);
});
while (_nodeItems.Any(x => !x.Used))
{
var item = GetUnUsedAndMinNodeItem();
if (item == null)
break;
item.Used = true;
var tempRow = GetRowArray(_graph, item.Index);
foreach (var nodeItem in _nodeItems)
{
if (nodeItem.Weight > tempRow[nodeItem.Index] + item.Weight)
{
nodeItem.Weight = tempRow[nodeItem.Index] + item.Weight;
nodeItem.Nodes.Clear();
nodeItem.Nodes.AddRange(item.Nodes);
nodeItem.Nodes.Add(item.NodeId);
}
}
}
var desNodeitem = _nodeItems.FirstOrDefault(x => x.NodeId == endPointID);
if (desNodeitem.Used && desNodeitem.Weight < double.MaxValue)
{
var edges = new List<Edge>();
foreach (var index in Enumerable.Range(0, desNodeitem.Nodes.Count - 1))
{
edges.Add(_edges.FirstOrDefault(x => x.StartNodeID == desNodeitem.Nodes[index] && x.EndNodeID == desNodeitem.Nodes[index + 1]));
}
edges.Add(_edges.FirstOrDefault(x => x.StartNodeID == desNodeitem.Nodes.Last() && x.EndNodeID == endPointID));
return new Route()
{
Edges = edges
};
}
return null;
}
catch (Exception ex)
{
_logger.LogError(ex.ToString());
_logger.LogInformation($"startPoint:{startPointID}-endpoint:{endPointID} route faild.");
throw;
}
finally
{
_nodeItems.ForEach(x =>
{
x.Used = false;
x.Nodes.Clear();
});
IsRouting = false;
}
}
private NodeItem GetUnUsedAndMinNodeItem()
{
return _nodeItems.Where(x => !x.Used && x.Weight != double.MaxValue).OrderBy(x => x.Weight).FirstOrDefault();
}
private double[] GetRowArray(double[,] source, int row)
{
double[] result = new double[source.GetLength(1)];
foreach (var index in Enumerable.Range(0, result.Length))
{
result[index] = source[row, index];
}
return result;
}
完整代码
public class DijkstraRouter
{
private double[,] _graph;
private List<Edge> _edges;//所有的边
private List<Node> _nodes;//所有的节点
private List<NodeItem> _nodeItems;
public bool IsRouting { get; set; }
private readonly ILogger<DijkstraRouter> _logger;
public DijkstraRouter(ILogger<DijkstraRouter> logger)
{
_logger = logger;
}
public Route GetRoute(int startPointID, int endPointID)
{
if (IsRouting)
throw new InvalidOperationException($"can't route.router busy");
IsRouting = true;
Node sNode = null;
Node dNode = null;
try
{
if ((sNode = _nodes.FirstOrDefault(x => x.Id == startPointID)) == null
|| (dNode = _nodes.FirstOrDefault(x => x.Id == endPointID)) == null)
throw new ArgumentNullException("can't found target points.");
_nodeItems.FirstOrDefault(x => x.NodeId == startPointID).Used = true;
_nodeItems.ForEach(x =>
{
x.Weight = GetRowArray(_graph, _nodes.IndexOf(sNode))[x.Index];
x.Nodes.Add(startPointID);
});
while (_nodeItems.Any(x => !x.Used))
{
var item = GetUnUsedAndMinNodeItem();
if (item == null)
break;
item.Used = true;
var tempRow = GetRowArray(_graph, item.Index);
foreach (var nodeItem in _nodeItems)
{
if (nodeItem.Weight > tempRow[nodeItem.Index] + item.Weight)
{
nodeItem.Weight = tempRow[nodeItem.Index] + item.Weight;
nodeItem.Nodes.Clear();
nodeItem.Nodes.AddRange(item.Nodes);
nodeItem.Nodes.Add(item.NodeId);
}
}
}
var desNodeitem = _nodeItems.FirstOrDefault(x => x.NodeId == endPointID);
if (desNodeitem.Used && desNodeitem.Weight < double.MaxValue)
{
var edges = new List<Edge>();
foreach (var index in Enumerable.Range(0, desNodeitem.Nodes.Count - 1))
{
edges.Add(_edges.FirstOrDefault(x => x.StartNodeID == desNodeitem.Nodes[index] && x.EndNodeID == desNodeitem.Nodes[index + 1]));
}
edges.Add(_edges.FirstOrDefault(x => x.StartNodeID == desNodeitem.Nodes.Last() && x.EndNodeID == endPointID));
return new Route()
{
Edges = edges
};
}
return null;
}
catch (Exception ex)
{
_logger.LogError(ex.ToString());
_logger.LogInformation($"startPoint:{startPointID}-endpoint:{endPointID} route faild.");
throw;
}
finally
{
_nodeItems.ForEach(x =>
{
x.Used = false;
x.Nodes.Clear();
});
IsRouting = false;
}
}
private NodeItem GetUnUsedAndMinNodeItem()
{
return _nodeItems.Where(x => !x.Used && x.Weight != double.MaxValue).OrderBy(x => x.Weight).FirstOrDefault();
}
private double[] GetRowArray(double[,] source, int row)
{
double[] result = new double[source.GetLength(1)];
foreach (var index in Enumerable.Range(0, result.Length))
{
result[index] = source[row, index];
}
return result;
}
public void Initialize(IEnumerable<Edge> edges, IEnumerable<Node> nodes)
{
_edges = edges.ToList();
_nodes = nodes.ToList();
_nodeItems = new List<NodeItem>();
_graph = new double[_nodes.Count(), _nodes.Count()];
foreach (var row in Enumerable.Range(0, _nodes.Count()))
{
var rowNode = _nodes[row];
foreach (var colnum in Enumerable.Range(0, _nodes.Count()))
{
if (row == colnum)
{
_graph[row, colnum] = 0;
continue;
}
var edge = _edges.FirstOrDefault(x =>
x.StartNodeID == rowNode.Id && x.EndNodeID == _nodes[colnum].Id);
_graph[row, colnum] = edge == null ? double.MaxValue : edge.Weight;
}
_nodeItems.Add(new NodeItem()
{
NodeId = _nodes[row].Id,
Index = row,
Weight = double.MaxValue
});
}
}
public class NodeItem
{
public bool Used { get; set; }
public List<int> Nodes { get; } = new List<int>();
public int NodeId { get; set; }
public int Index { get; set; }
public double Weight { get; set; }
}
}
最短路径算法-迪杰斯特拉(Dijkstra)算法在c#中的实现和生产应用的更多相关文章
- JS实现最短路径之迪杰斯特拉(Dijkstra)算法
最短路径: 对于网图来说,最短路径是指两个顶点之间经过的边上权值和最少的路径,我们称第一个顶点是源点,最后一个顶点是终点 迪杰斯特拉 ( Dijkstra) 算法是并不是一下子就求出 了 Vo 到V8 ...
- [C++]单源最短路径:迪杰斯特拉(Dijkstra)算法(贪心算法)
1 Dijkstra算法 1.1 算法基本信息 解决问题/提出背景 单源最短路径(在带权有向图中,求从某顶点到其余各顶点的最短路径) 算法思想 贪心算法 按路径长度递增的次序,依次产生最短路径的算法 ...
- 迪杰斯特拉Dijkstra算法介绍
迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径. 它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止. 基本思想 通过Dijk ...
- 最短路径-迪杰斯特拉(dijkstra)算法及优化详解
简介: dijkstra算法解决图论中源点到任意一点的最短路径. 算法思想: 算法特点: dijkstra算法解决赋权有向图或者无向图的单源最短路径问题,算法最终得到一个最短路径树.该算法常用于路由算 ...
- 最短路径 - 迪杰斯特拉(Dijkstra)算法
对于网图来说,最短路径,是指两顶点之间经过的边上权值之和最少的路径,并且我们称路径上的第一个顶点为源点,最后一个顶点为终点.最短路径的算法主要有迪杰斯特拉(Dijkstra)算法和弗洛伊德(Floyd ...
- 图的最短路径---迪杰斯特拉(Dijkstra)算法浅析
什么是最短路径 在网图和非网图中,最短路径的含义是不一样的.对于非网图没有边上的权值,所谓的最短路径,其实就是指两顶点之间经过的边数最少的路径. 对于网图,最短路径就是指两顶点之间经过的边上权值之和最 ...
- 单源最短路径算法:迪杰斯特拉 (Dijkstra) 算法(二)
一.基于邻接表的Dijkstra算法 如前一篇文章所述,在 Dijkstra 的算法中,维护了两组,一组包含已经包含在最短路径树中的顶点列表,另一组包含尚未包含的顶点.使用邻接表表示,可以使用 BFS ...
- 单源最短路径算法:迪杰斯特拉 (Dijkstra) 算法(一)
一.算法介绍 迪杰斯特拉算法(英语:Dijkstra's algorithm)由荷兰计算机科学家艾兹赫尔·迪杰斯特拉在1956年提出.迪杰斯特拉算法使用了广度优先搜索解决赋权有向图的单源最短路径问题. ...
- C# 迪杰斯特拉(Dijkstra)算法
Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 其基本思想是,设置顶点集合S并不断地作 ...
随机推荐
- MAUI与Blazor共享一套UI,媲美Flutter,实现Windows、macOS、Android、iOS、Web通用UI
1. 前言 距离上次发<MAUI初体验:爽>一文已经过去2个月了,本计划是下半年或者明年再研究MAUI的,现在计划提前啦,因为我觉得MAUI Blazor挺有意思的:在Android.iO ...
- 手把手教学~基于element封装tree树状下拉框
在日常项目开发中,树状下拉框的需求还是比较常见的,但是element并没有这种组件以供使用.在这里,小编就基于element如何封装一个树状下拉框做个详细的介绍. 通过这篇文章,你可以了解学习到一个树 ...
- SAP Web Dynpro-监视应用程序
您可以使用ABAP监视器来监视Web Dynpro应用程序. 存储有关Web Dynpro应用程序的信息. 您可以使用T代码-RZ20查看此信息. 您可以在Web Dynpro ABAP监视器中查看以 ...
- SAP Web Dynpro - 个性化和配置
根据业务需求,您可以实现许多标准应用程序,并且Web Dynpro应用程序的UI可以根据要求而有所不同. 应用配置 要配置Web Dynpro应用程序,首先要为单个Web Dynpro组件配置数据记录 ...
- Kubebuilder模块
CRD创建 Group表示CRD所属的组,它可以支持多种不同版本.不同类型的资源构建,Version表示CRD的版本号,Kind表示CRD的类型 kubebuilder create api --gr ...
- 《The Tail At Scale》论文详解
简介 用户体验与软件的流畅程度是呈正相关的,所以对于软件服务提供方来说,保持服务耗时在用户能接受的范围内就是一件必要的事情.但是在大型分布式系统上保持一个稳定的耗时又是一个很大的挑战,这篇文章解析的是 ...
- 超 Nice 的表格响应式布局小技巧
今天,遇到了一个很有意思的问题,一名群友问我,仅仅使用 CSS,能否实现这样一种响应式的布局效果: 简单解析一下效果: 在屏幕视口较为宽时,表现为一个整体 Table 的样式 而当屏幕视口宽度较小时, ...
- 关于 用fscanf读文件,把文件中用##分割的内容分开
今天呀,被学弟问了一个问题 文件里存的是"123##456##0##1644444.....##" 为什么用fscanf(fp, "%s##%s......", ...
- java线程池开启多线程
// //maximumPoolSize设置为2 ,拒绝策略为AbortPolic策略,直接抛出异常 ThreadPoolExecutor pool = new ThreadPoolExecutor( ...
- Vue生命周期和MVVM框架
生命周期 组件从开始到结束的全过程 创建阶段:beforeCreate.created 挂载阶段:beforeMount.mounted 更新阶段:beforeUpdate.updated 销毁阶段: ...