CF1404E Bricks (最大权独立集)
考虑把答案进行转化,通过分矩形条,我们能去掉一些夹在#之间的边
那么答案= #个数 - 能去掉的边个数
但去掉是有限制的,同一个#格子的横边和竖边不能同时去掉
把边转化成点,限制变成边。
横竖边的点 和 限制 构成了一个二分图。
问题转化成求这个二分图的最大权独立集!!
上dinic就行了
1 #include <set>
2 #include <vector>
3 #include <cstdio>
4 #include <cstring>
5 #include <algorithm>
6 #define ull unsigned long long
7 #define ll long long
8 using namespace std;
9 const int N1=200+5, inf=0x3f3f3f3f;
10 int xx[]={-1,1,0,0}, yy[]={0,0,-1,1};
11
12 template <typename _T> void read(_T &ret)
13 {
14 ret=0; _T fh=1; char c=getchar();
15 while(c<'0'||c>'9'){ if(c=='-') fh=-1; c=getchar(); }
16 while(c>='0'&&c<='9'){ ret=ret*10+c-'0'; c=getchar(); }
17 ret=ret*fh;
18 }
19
20 const int N2=8e4+5, M2=N2*8;
21 struct EDGE{
22 int to[M2],nxt[M2],flow[M2],head[N2],cte;
23 void ae(int u,int v,int f)
24 { cte++; to[cte]=v, nxt[cte]=head[u]; flow[cte]=f; head[u]=cte; }
25 void adde(int u,int v,int f)
26 { ae(u,v,f); ae(v,u,0); }
27 }e;
28 int idx(char c){ return c-'0'; }
29
30 int n,m,S,T;
31 int xid[N1][N1],yid[N1][N1],tot;
32 char str[N1][N1];
33
34 int que[N2],hd,tl,cur[N2],dep[N2];
35 int bfs()
36 {
37 int x,j,v;
38 memset(dep,-1,sizeof(dep)); memcpy(cur,e.head,sizeof(cur));
39 hd=1,tl=0; que[++tl]=S; dep[S]=0;
40 while(hd<=tl)
41 {
42 x=que[hd++];
43 for(int j=e.head[x];j;j=e.nxt[j])
44 {
45 v=e.to[j]; if(e.flow[j]<=0||dep[v]!=-1) continue;
46 dep[v]=dep[x]+1; que[++tl]=v;
47 }
48 }
49 return dep[T]!=-1;
50 }
51 int dfs(int x,int limit)
52 {
53 int j,v,flow,ans=0;
54 if(!limit||x==T) return limit;
55 for(j=cur[x];j;j=e.nxt[j])
56 {
57 cur[x]=j; v=e.to[j];
58 if(dep[v]==dep[x]+1 && (flow=dfs(v,min(limit,e.flow[j]))) )
59 {
60 limit-=flow; ans+=flow;
61 e.flow[j]-=flow; e.flow[j^1]+=flow;
62 if(!limit) break;
63 }
64 }
65 return ans;
66 }
67 int Dinic()
68 {
69 int ans=0,flow;
70 while(bfs())
71 {
72 flow=dfs(S,inf);
73 if(!flow) break;
74 ans+=flow;
75 }
76 return ans;
77 }
78
79 int main()
80 {
81 // freopen("a.in","r",stdin);
82 read(n); read(m);
83 for(int i=1;i<=n;i++) scanf("%s",str[i]+1);
84 e.cte=1;
85 for(int i=1;i<n;i++) for(int j=1;j<=m;j++) xid[i][j]=++tot;
86 for(int i=1;i<=n;i++) for(int j=1;j<m;j++) yid[i][j]=++tot;
87 S=++tot; T=++tot;
88 for(int i=1;i<n;i++) for(int j=1;j<=m;j++) e.adde(S,xid[i][j],1);
89 for(int i=1;i<=n;i++) for(int j=1;j<m;j++) e.adde(yid[i][j],T,1);
90 int suma=0,sumb=0;
91 for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) if(str[i][j]=='#')
92 {
93 suma++;
94 int id[4]={-1,-1,-1,-1};
95 for(int k=0;k<4;k++) if(str[i+xx[k]][j+yy[k]]=='#')
96 {
97 if(k==0) id[k]=xid[i-1][j];
98 if(k==1) id[k]=xid[i][j];
99 if(k==2) id[k]=yid[i][j-1];
100 if(k==3) id[k]=yid[i][j];
101 sumb++;
102 }
103 for(int x=0;x<=1;x++) for(int y=2;y<=3;y++) if(id[x]!=-1&&id[y]!=-1)
104 {
105 e.adde(id[x],id[y],1);
106 }
107 }
108 sumb>>=1;
109 sumb-=Dinic();
110 printf("%d\n",suma-sumb);
111 return 0;
112 }
CF1404E Bricks (最大权独立集)的更多相关文章
- HDU 1569 方格取数(2)(最大流最小割の最大权独立集)
Description 给你一个m*n的格子的棋盘,每个格子里面有一个非负数. 从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取数所在的2个格子不能相邻,并且取出的数的和最大. ...
- hdu 1569 最大权独立集
/*最大点权独立集=sum-最小点权覆盖*/ #include<stdio.h> #include<string.h> #include<queue> using ...
- BZOJ3275Number——二分图最大权独立集
题目描述 有N个正整数,需要从中选出一些数,使这些数的和最大.若两个数a,b同时满足以下条件,则a,b不能同时被选1:存在正整数C,使a*a+b*b=c*c2:gcd(a,b)=1 输入 第一行一个正 ...
- HDU 1565:方格取数(1)(最大点权独立集)***
http://acm.hdu.edu.cn/showproblem.php?pid=1565 题意:中文. 思路:一个棋盘,要使得相邻的点不能同时选,问最大和是多少,这个问题就是最大点权独立集. 可以 ...
- BZOJ3548 : [ONTAK2010]Party
首先将朋友通过并查集缩起来,因为$P\geq\frac{n(n-1)}{3}$,所以最后最多剩下$46$个点. 将自相矛盾的点删掉,就变成求最大权独立集问题,这等于求补图的最大团. 然后直接用Bron ...
- 最小割 总结&&做题记录
模型要点: 1.一般适用于二取一问题或者01规划. 2.利用最小割=最大流,转化为最大流求之. 建议阅读胡伯涛的论文 <<最小割模型在信息学竞赛的应用>>,有精彩有序的证明和各 ...
- LightOJ1360 Skyscraper(DP)
题目大概是,一个数轴上n个线段,每个线段都有起始坐标.长度和权值,问从中取出没有公共交点的线段的最大权和. 取k次是个经典的最小费用最大流问题,不过这题建容量网络有20W个点,离散化最多也要6W个点, ...
- bzoj 3275 Number(最小割)
[题意] 给定n个数,要求选出一些数满足 1.存在c,a*a+b*b=c*c 2.gcd(a,b)=1 使得和最大. [思路] 二分图的最大权独立集(可以这么叫么QAQ 先拆点,对于不满足条件的两个 ...
- bzoj3275
容易想到是最小割(最大权独立集)然后每个数拆成两个点,不能同时选的之间连边跑最小割,最后答案=总数-mincut/2 因为这样建图将流量变成了原来的两倍 当然这道题更好的建图方法是分成奇数和偶数两个集 ...
随机推荐
- Solution -「NOI 2020」「洛谷 P6776」超现实树
\(\mathcal{Description}\) Link. 对于非空二叉树 \(T\),定义 \(\operatorname{grow}(T)\) 为所有能通过若干次"替换 \( ...
- 利用脚本快速执行Dockerfile以及docker镜像的启停与删除
`关于脚本:` 'sh setup.sh build' # 将Dockerfile创建成镜像 'sh setup.sh run' # 启动build创建好的镜像,放到后台运行 'sh setup.sh ...
- c++ TextQuery程序
TextQuery程序 我写的第一个版本 返回的是map<size_t, string>这个数据量很大,效率低下. TextQuery.h #inlucde<vector> # ...
- Docker 镜像 层结构理解
镜像到底是什么.镜像的层结构又是什么 通过docker history命令进行分析,镜像是一种其他镜像+文件+命令的组合. 这些镜像的加载.文件导入创建.命令是存在顺序关系的,所以也引出了层的概念. ...
- 常用环境变量配置(vim /etc/profile)
安装,参考:https://www.cnblogs.com/uncleyong/category/1457906.html # jdk export JAVA_HOME=/usr/local/jdk1 ...
- react 也就这么回事 04 —— 元素渲染
为了便于后续理解,我们再来回顾和总结前面几个章节的内容 1 元素及其创建 元素是构成 React 应用的最小砖块. 元素描述了你在屏幕上想看到的内容. const element = <h1&g ...
- [Matlab]二维隐函数绘图
MATLAB提供了一个ezplot函数绘制隐函数图形,有三种调用方式: 对于函数f=f(x),ezplot函数的调用格式为: ezplot(f):在默认区间-2pi<=x<=2pi内绘制f ...
- 号称BI商业智能界的“四大天王”
基于云部署的现代商业智能与数据分析平台(国内似乎只有应用上云,数据本地化的趋势)正在逐步占据主流市场.随着市场在易用性和增强分析(augmented analytics)的变革,数据与分析领导者正在逐 ...
- 【C#DLR 动态编程】CallSite<T>
CallSite<T>译为"动态(调用)站点",它是DLR中的核心组件之一
- Iptables 防火墙常用配置
转至:https://blog.csdn.net/lswzw/article/details/87971259 Iptables 防火墙常用配置 概念 命令行模式 查看 & 命令 -n:直接显 ...