模型测试

import cv2
from torchvision import transforms, datasets, models
from torch.utils.data import DataLoader
import torch
import numpy as np
import os
from sklearn import metrics
import matplotlib.pyplot as plt device = torch.device("cuda:2" if torch.cuda.is_available() else "cpu")
print(device)
num_class = 3
model_path = 模型路径
model = 模型(num_class).to(device)
model.load_state_dict(torch.load(model_path))
model.eval() # Set model to evaluate mode test_dataset = 数据集读取(train=False)
test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=2) def turn(l):
l = l.data.cpu().numpy()
l = l.squeeze()
l = np.swapaxes(l, 0, 2)
l = np.swapaxes(l, 0, 1)
return l for inputs, labels in test_loader:
model.to(device)
inputs = inputs.to(device)
labels = labels.to(device) pred = model(inputs)
# pred = torch.relu(pred)
pred = turn(pred)
gt = turn(labels)

评价指标

混淆矩阵

以分割为例,经过.flatten()处理。

def acc(pred, gt):
tp = 0
tn = 0
fp = 0
fn = 0
num = len(pred)
for i in range(num):
if pred[i] > 0 and gt[i] == 1:
tp += 1
if pred[i] > 0 and gt[i] == 0:
fp += 1
if pred[i] == 0 and gt[i] == 1:
fn += 1
if pred[i] == 0 and gt[i] == 0:
tn += 1
acc = (tp + tn) / num
iou = tp / (tp + fp + fn)
rec = tp / (tp + fn)
pre = tp / (tp + fp)
f1 = 2 * pre * rec / (pre + rec)
print("mAcc is :{}, mIou is :{}, recall is :{}, precision is :{}, f1 is :{}".format(acc, iou, rec, pre, f1))

ROC曲线图

def draw_roc(pred, gt, name):
tpr, fpr, thresholds = metrics.roc_curve(gt, pred, pos_label=0)
plt.figure
plt.plot(fpr, tpr, label = name)
plt.xlabel('FPR')
plt.ylabel('TPR')
plt.legend(loc = 'lower right')
plt.title(name)
plt.savefig('路径/{}.png'.format(name))
# plt.close() 如果有多个类别,不close()就会画在一张图上

[AI]-模型测试和评价指标的更多相关文章

  1. [DeeplearningAI笔记]ML strategy_1_2开发测试集评价指标

    机器学习策略 ML strategy 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.4 满足和优化指标 Stisficing and optimizing metrics 有时候把你要考 ...

  2. Microsoft宣布为Power BI提供AI模型构建器,关键驱动程序分析和Azure机器学习集成

    微软的Power BI现在是一种正在大量结合人工智能(AI)的商业分析服务,它使用户无需编码经验或深厚的技术专长就能够创建报告,仪表板等.近日西雅图公司宣布推出几款新的AI功能,包括图像识别和文本分析 ...

  3. 分类模型的性能评价指标(Classification Model Performance Evaluation Metric)

    二分类模型的预测结果分为四种情况(正类为1,反类为0): TP(True Positive):预测为正类,且预测正确(真实为1,预测也为1) FP(False Positive):预测为正类,但预测错 ...

  4. 回归模型的性能评价指标(Regression Model Performance Evaluation Metric)

    回归模型的性能评价指标(Performance Evaluation Metric)通常有: 1. 平均绝对误差(Mean Absolute Error, MAE):真实目标y与估计值y-hat之间差 ...

  5. 如何借助 JuiceFS 为 AI 模型训练提速 7 倍

    背景 海量且优质的数据集是一个好的 AI 模型的基石之一,如何存储.管理这些数据集,以及在模型训练时提升 I/O 效率一直都是 AI 平台工程师和算法科学家特别关注的事情.不论是单机训练还是分布式训练 ...

  6. CANN5.0黑科技解密 | 别眨眼!缩小隧道,让你的AI模型“身轻如燕”!

    摘要:CANN作为释放昇腾硬件算力的关键平台,通过深耕先进的模型压缩技术,聚力打造AMCT模型压缩工具,在保证模型精度前提下,不遗余力地降低模型的存储空间和计算量. 随着深度学习的发展,推理模型巨大的 ...

  7. 二手车价格预测 | 构建AI模型并部署Web应用 ⛵

    作者:韩信子@ShowMeAI 数据分析实战系列:https://www.showmeai.tech/tutorials/40 机器学习实战系列:https://www.showmeai.tech/t ...

  8. AI 音辨世界:艺术小白的我,靠这个AI模型,速识音乐流派选择音乐 ⛵

    作者:韩信子@ShowMeAI 数据分析实战系列:https://www.showmeai.tech/tutorials/40 机器学习实战系列:https://www.showmeai.tech/t ...

  9. 炸金花游戏(3)--基于EV(期望收益)的简单AI模型

    前言: 炸金花这款游戏, 从技术的角度来说, 比德州差了很多. 所以他的AI模型也相对简单一些. 本文从EV(期望收益)的角度, 来尝试构建一个简单的炸金花AI. 相关文章: 德州扑克AI--Prog ...

随机推荐

  1. Kafka KRaft模式探索

    1.概述 Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者在网站中的所有动作流数据.其核心组件包含Producer.Broker.Consumer,以及依赖的Zookeeper集群. ...

  2. 开启apache2的ssl访问功能

    Ubuntu 20.04 1. Apache2默认安装的时候,ssl模块是不启用的.开启命令: $ sudo apt install apache2 #安装$ sudo a2enmod ssl #开启 ...

  3. 二叉排序树的合并(严3.98)--------西工大noj

    二叉排序树的合并有三种方法 先存入数组,然后..... 直接在第二个树上添加第一个数的元素,时间复杂度为O(NlogN) 就像是合并数组一样合并二叉排序树,分别扫描,时间复杂度极低. 第三种我写了一下 ...

  4. 开源MyBatisGenerator组件源码分析

    开源MyBatisGenerator组件源码分析 看源码前,先了解Generator能做什么? MyBatisGenerator是用来生成mybatis的Mapper接口和xml文件的工具,提供多种启 ...

  5. 配置Webpack Dev Server 实战操作方法步骤

    本文摘要:配置 Webpack Dev Server 可以解决本地开发前端应用时,手动执行 webpack 命令或 yarn build 命令,再去浏览器中访问 dist/index.html 的麻烦 ...

  6. linux 常用操作搜集

    1.去除空行 方法一:利用grep grep -v '^\s*$' test.txt 注:-v表示将匹配的结果进行反转,正则表达式匹配空行.(空行可包括空格符制表符等空白字符) 方法二:利用sed s ...

  7. Python3.7+jieba(结巴分词)配合Wordcloud2.js来构造网站标签云(关键词集合)

    原文转载自「刘悦的技术博客」https://v3u.cn/a_id_138 其实很早以前就想搞一套完备的标签云架构了,迫于没有时间(其实就是懒),一直就没有弄出来完整的代码,说到底标签对于网站来说还是 ...

  8. 关于Tornado5.1:到底是真实的异步和还是虚假的异步

    原文转载自「刘悦的技术博客」https://v3u.cn/a_id_107 我们知道Tornado 优秀的大并发处理能力得益于它的 web server 从底层开始就自己实现了一整套基于 epoll ...

  9. python3.7爬虫:使用Selenium带Cookie登录并且模拟进行表单上传文件

    原文转载自「刘悦的技术博客」https://v3u.cn/a_id_142 前文再续,书接上一回,之前一篇文章我们尝试用百度api智能识别在线验证码进行模拟登录:Python3.7爬虫:实时api(百 ...

  10. SElinux管理

    SElinux: 是Linux的一个强制访问控制的安全模块 SElinux的相关概念: 对象:文件.目录.进程.端口等 主体:进程称为主体 SElinux将所有的文件都赋予一个type类型的标签,所有 ...