平衡二叉树(AVL树)定义如下:平衡二叉树或者是一棵空树,或者是具有以下性质的二叉排序树:

  (1)它的左子树和右子树的高度之差绝对值不超过1;

  (2)它的左子树和右子树都是平衡二叉树。

  AVL树避免了平衡二叉树初始序列有序建立的类似单链表情况,提高了查找效率。

  1.AVL树的相关参量定义

#define _CRT_SECURE_NO_DEPRECATE
#include<stdio.h>
#include<stdlib.h>
#include<windows.h>
#define DataType int
#define LH 1		//左边高一层
#define EH 0		//左右分支等高
#define RH -1		//右边高一层
const int MAXSIZE = 100;//栈和队列的最大容量
typedef struct BSTNode{
	DataType data;
	int bf;//平衡因子,值为LH、EH、RH
	struct BSTNode *lchild, *rchild;
}BSTNode, *BSTree;

  2.插入函数

bool InsertAVL(BSTree &T,DataType x,boolean &taller)//插入后是否长高,一处修改处处修改,taller为bool类型
{//插入过程伴随着查找过程,没有则插入
	if (!T)//如果空树,则直接添加新结点
	{
		T = (BSTree)malloc(sizeof(BSTNode));
		T->data = x;
		T->lchild = T->rchild = NULL;
		T->bf = EH;
		taller = true;//长高了
	}
	else
	{
		if (T->data == x)//数据元素已存在,不必插入
		{
			taller = false;
			return false;
		}
		else if (x < T->data)//数据在树根的左分支
		{
			if (!InsertAVL(T->lchild, x, taller))//左分支已存在,但即使不存在也返回了taller的值
				return false;
			if (taller)//如果导致树长高了,则进一步判断及处理
			{
				switch (T->bf)
				{
					case LH://左分支本来就比右分支高一层,又加了一层,当然进行左平衡
						LeftBalence(T);//左调平衡函数
						taller = false;
						break;
					case EH://本来左右等高,修改标志位即可
						T->bf = LH;
						taller = true;
						break;
					case RH://本来右分支高1,修改标志位
						T->bf = EH;
						taller = false;
						break;
				}
			}
		}
		else
		{
			if (!InsertAVL(T->rchild, x, taller))//进行T的右分支,同理
				return false;
			if (taller)
			{
				switch (T->bf)
				{
					case RH:
						RightBalence(T);
						taller = false;
						break;
					case EH:
						T->bf = RH;
						taller = true;
						break;
					case LH:
						T->bf = EH;
						taller = false;
						break;
				}
			}
		}
	}
	return true;
}

  3.着重分析左右调平衡函数

  左调平衡

有且仅有两种情况,一定是原本左边比右边高1层,而且在左边加了1层才要左调平衡的。

(1)

                           

  这种情况是在原本的根节点T的左孩子L上加了左孩子,显然此时T和L都无右孩子,所以要调整为L为根节点,也就是T根节点右旋(顺时针旋转)。

  调整完显然平衡因子bf变化为  T->bf = L->bf = EH;

(2)另一种是在原本的根节点T的左孩子L上加了右孩子导致失衡(某一结点的做右分支高度相差大于1)产生。

(A)

             

  对应(1)的情况,在L加了右孩子Lr,且L无左孩子,T无右孩子。先将L左旋(L逆时针旋转)得到类似(1)的情形,然后将T右旋。

  调整完三个结点平衡因子  T->bf = L->bf =Lr->bf= EH;

(B)此种情况为在L的右孩子Lr上加了左孩子

       

  先将L左旋,Lr作为L的双亲结点T的左孩子,L作为Lr的左孩子,Lr的左孩子作为L的右孩子,这也是具体的左旋算法,然后将T右旋。

  调整完三个结点平衡因子    T->bf = RH;   L->bf = EH;   Lr->bf = EH;

(C)此种情况为在L的右孩子Lr上加了右孩子

    

  先将L左旋,然后将T作为Lr的右孩子,且将Lr的右孩子最为T的左孩子,这也是具体的右旋算法。

  调整完三个结点平衡因子 T->bf = EH;  L->bf = LH; Lr->bf = EH;

  注意,此调平衡的规则的代码是递归式的,所以一定是从底层往上层调平衡,也就是说下面先调平衡。

总结(2):具体的也分析了左旋右旋的具体算法,每种情况都有Lr->bf=EH,并且算法都符合平衡二叉树的规则要求。

void R_Rotate(BSTree &T)//右旋,T的左孩子可能有右孩子或者为空,一起整
{
	BSTree p;
	p = T->lchild;
	T->lchild = p->rchild;
	p->rchild = T;
	T=p;
}
void L_Rotate(BSTree &T)//左旋
{
	BSTree p;
	p = T->rchild;
	T->rchild = p->lchild;
	p->lchild = T;
	T = p;
}
void LeftBalence(BSTree &T)//平衡左分支
{
	BSTree L, Lr;
	L = T->lchild;
	switch (L->bf)
	{
		case LH://是在根节点T的左孩子L的左孩子上加了结点导致失衡
			T->bf = L->bf = EH;//调整后的参数变化
			R_Rotate(T);//右旋根节点T
			break;
		case RH://是在根节点T的左孩子L的左孩子上加了结点导致失衡
			Lr = L->rchild;
			switch (Lr->bf)//对L的右孩子Lr的参数bf进行判断及进一步分析
			{
				case LH://Lr的左边加了新结点
					T->bf = RH;
					L->bf = EH;
					break;
				case EH://Lr左右等高
					T->bf = L->bf = EH;
					break;
				case RH://Lr的右边边加了新结点
					T->bf = EH;
					L->bf = LH;
					break;
			}
			//统一改参数,先左旋T的左孩子,再右旋T
			Lr->bf = EH;
			L_Rotate(T->lchild);
			R_Rotate(T);
	}
}

  右调平衡与左调平衡类似的分析方法。

void RightBalence(BSTree &T)//平衡右分支
{
	BSTree R, Rl;
	R = T->rchild;
	switch (R->bf)
	{
		case RH:
			T->bf = R->bf = EH;
			L_Rotate(T);
			break;
		case LH:
			Rl = R->lchild;
			switch (Rl->bf)
			{
				case RH:
					T->bf = LH;
					R->bf = EH;
					break;
				case EH:
					T->bf = R->bf = EH;
					break;
				case LH:
					T->bf = EH;
					R->bf = RH;
					break;
			}
		Rl->bf = EH;
		R_Rotate(T->rchild);
		L_Rotate(T);
	}
}

  4.创建函数及其他函数

void CreatAVL(BSTree &T,int n)//创建AVL树,用到了插入函数
{
	printf("请输入%d个数据:\n", n);
	int a;
	boolean taller = 0;//初始化
	for (int i = 0; i < n; i++)//循环添加
	{
		scanf("%d", &a);
		InsertAVL(T, a,taller);
	}
}
void InOrder(BSTree &T)//中序遍历看是否是递增序列
{
	if (T)
	{
		InOrder(T->lchild);
		printf("%3d", T->data);
		InOrder(T->rchild);
	}
}
void TreeDispNode(BSTree bt)//括号表示法,用来看树的构造情况
{
	if (bt != NULL)
	{
		printf("%d", bt->data);
		if (bt->lchild != NULL || bt->rchild != NULL)
		{
			printf("(");
			TreeDispNode(bt->lchild);
			if (bt->rchild != NULL)printf(",");
			TreeDispNode(bt->rchild);
			printf(")");
		}
	}
}

  5.测试代码

int main()//测试代码
{
	BSTree mytree=NULL;
	CreatAVL(mytree, 10);
	InOrder(mytree);
	printf("\n");
	TreeDispNode(mytree);
	printf("\n");
	system("pause");
	return 0;
}

  注意:代码的相关函数要调整位置,使得被调用的函数在调用其的函数之前,分析调整代码应数形结合。

数据结构之平衡二叉树(AVL树)的更多相关文章

  1. 【数据结构】平衡二叉树—AVL树

    (百度百科)在计算机科学中,AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下都是O(log n).增 ...

  2. 二叉查找树(BST)、平衡二叉树(AVL树)(只有插入说明)

    二叉查找树(BST).平衡二叉树(AVL树)(只有插入说明) 二叉查找树(BST) 特殊的二叉树,又称为排序二叉树.二叉搜索树.二叉排序树. 二叉查找树实际上是数据域有序的二叉树,即对树上的每个结点, ...

  3. 数据结构与算法——AVL树类的C++实现

    关于AVL树的简单介绍能够參考:数据结构与算法--AVL树简单介绍 关于二叉搜索树(也称为二叉查找树)能够參考:数据结构与算法--二叉查找树类的C++实现 AVL-tree是一个"加上了额外 ...

  4. Java 树结构实际应用 四(平衡二叉树/AVL树)

    平衡二叉树(AVL 树) 1 看一个案例(说明二叉排序树可能的问题) 给你一个数列{1,2,3,4,5,6},要求创建一颗二叉排序树(BST), 并分析问题所在.  左边 BST 存在的问题分析: ...

  5. 平衡二叉树,AVL树之图解篇

    学习过了二叉查找树,想必大家有遇到一个问题.例如,将一个数组{1,2,3,4}依次插入树的时候,形成了图1的情况.有建立树与没建立树对于数据的增删查改已经没有了任何帮助,反而增添了维护的成本.而只有建 ...

  6. 数据结构(三)实现AVL树

    AVL树的定义 一种自平衡二叉查找树,中面向内存的数据结构. 二叉搜索树T为AVL树的满足条件为: T是空树 T若不是空树,则TL.TR都是AVL树,且|HL-HR| <= 1 (节点的左子树高 ...

  7. 二叉查找树(BST)、平衡二叉树(AVL树)

    二叉查找树(BST) 特殊的二叉树,又称为排序二叉树.二叉搜索树.二叉排序树. 二叉查找树实际上是数据域有序的二叉树,即对树上的每个结点,都满足其左子树上所有结点的数据域均小于或等于根结点的数据域,右 ...

  8. 图解:平衡二叉树,AVL树

    学习过了二叉查找树,想必大家有遇到一个问题.例如,将一个数组{1,2,3,4}依次插入树的时候,形成了图1的情况.有建立树与没建立树对于数据的增删查改已经没有了任何帮助,反而增添了维护的成本.而只有建 ...

  9. 数据结构与算法分析-AVL树

    1.AVL树是带有平衡条件的二叉查找树. 2.AVL树的每个节点高度最多相差1. 3.AVL树实现的难点在于插入或删除操作.由于插入和删除都有可能破坏AVL树高度最多相差1的特性,所以当特性被破坏时需 ...

  10. 数据结构——二叉查找树、AVL树

    二叉查找树:由于二叉查找树建树的过程即为插入的过程,所以其中序遍历一定为升序排列! 插入:直接插入,插入后一定为根节点 查找:直接查找 删除:叶子节点直接删除,有一个孩子的节点删除后将孩子节点接入到父 ...

随机推荐

  1. 非常提高mac生产力的一些插件归纳整理

    1.cheatsheet   快捷键提示插件,下载后按command键3秒,可以显示当前app的所有快捷键. 比如我现在在chrome的界面,按下command三秒,会弹出一个快捷键提示框. 2.Ba ...

  2. ubuntu14.04 安装pycharm

    参考链接: http://itsfoss.com/install-pycharm-ubuntu/ 怎样在ubuntu14.04上安装pycharm pycharm是一款为python开发而生的IDE. ...

  3. 11月10日下午 ajax做显示信息以后用ajax、Bootstrp做弹窗显示信息详情

    1.用ajax做弹窗显示信息详情 nation.php <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN&qu ...

  4. HTML5 离线缓存管理库

    一.HTML5离线缓存技术 支持离线缓存是HTML5中的一个重点,离线缓存就是让用户即使在断网的情况下依然可以正常的运行应用.传统的本地存储数据的方式有 localstorage,sessionsto ...

  5. hadoop源码编译——2.5.0版本

    强迫症必治: WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using b ...

  6. tyvj4541 zhx 提高组P1

    背景 提高组 描述 在一个N×M的棋盘上,要求放置K个车,使得不存在一个车同时能被两个车攻击.问方案数. 输入格式 一行三个整数,N,M,K. 输出格式 一行一个整数,代表答案对1000001取模之后 ...

  7. 关于session和cookie

    一.cookie机制和session机制的区别 **************************************************************************** ...

  8. C和指针 第十二章 使用结构和指针

    链表是一种常用的数据结构,每个节点通过链或者指针链接在一起,程序通过间接指针访问链表中的节点. typedef struct Node { //指向下一个节点的指针 struct Node *next ...

  9. SpringMVC Controller介绍

    SpringMVC Controller 介绍 一.简介 在SpringMVC 中,控制器Controller 负责处理由DispatcherServlet 分发的请求,它把用户请求的数据经过业务处理 ...

  10. WindowsForm菜单工具栏--2016年12月6日

    ContextMenuStrip 添加控件后可在其他空间属性中进行绑定 MenuStrip       设置热键:在编辑的时候输入(&F)       设置快捷键:选中菜单项--右键属性--S ...