Qin Shi Huang's National Road System

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6137    Accepted Submission(s): 2143

Problem Description
During the Warring States Period of ancient China(476 BC to 221 BC), there were seven kingdoms in China ---- they were Qi, Chu, Yan, Han, Zhao, Wei and Qin. Ying Zheng was the king of the kingdom Qin. Through 9 years of wars, he finally conquered all six other kingdoms and became the first emperor of a unified China in 221 BC. That was Qin dynasty ---- the first imperial dynasty of China(not to be confused with the Qing Dynasty, the last dynasty of China). So Ying Zheng named himself "Qin Shi Huang" because "Shi Huang" means "the first emperor" in Chinese.

Qin Shi Huang undertook gigantic projects, including the first version of the Great Wall of China, the now famous city-sized mausoleum guarded by a life-sized Terracotta Army, and a massive national road system. There is a story about the road system:
There were n cities in China and Qin Shi Huang wanted them all be connected by n-1 roads, in order that he could go to every city from the capital city Xianyang.
Although Qin Shi Huang was a tyrant, he wanted the total length of all roads to be minimum,so that the road system may not cost too many people's life. A daoshi (some kind of monk) named Xu Fu told Qin Shi Huang that he could build a road by magic and that magic road would cost no money and no labor. But Xu Fu could only build ONE magic road for Qin Shi Huang. So Qin Shi Huang had to decide where to build the magic road. Qin Shi Huang wanted the total length of all none magic roads to be as small as possible, but Xu Fu wanted the magic road to benefit as many people as possible ---- So Qin Shi Huang decided that the value of A/B (the ratio of A to B) must be the maximum, which A is the total population of the two cites connected by the magic road, and B is the total length of none magic roads.
Would you help Qin Shi Huang?
A city can be considered as a point, and a road can be considered as a line segment connecting two points.
 
Input
The first line contains an integer t meaning that there are t test cases(t <= 10).
For each test case:
The first line is an integer n meaning that there are n cities(2 < n <= 1000).
Then n lines follow. Each line contains three integers X, Y and P ( 0 <= X, Y <= 1000, 0 < P < 100000). (X, Y) is the coordinate of a city and P is the population of that city.
It is guaranteed that each city has a distinct location.
 
Output
For each test case, print a line indicating the above mentioned maximum ratio A/B. The result should be rounded to 2 digits after decimal point.
 
Sample Input
2
4
1 1 20
1 2 30
200 2 80
200 1 100
3
1 1 20
1 2 30
2 2 40
 
Sample Output
65.00
70.00
 
Source

题意:给你n个点的坐标和每个城市的人数p,现在要修路,两点之间距离就是欧拉距离,要使得所有的n个城市都联通,且可以免费修一条路(u,v),求使得A =pu + pv,  B = 要修的其他路的总长度,  求A/B的最大值

因为要使得n个城市联通,那我们只需要修n-1条路,可以枚举免费修的路(u,v),只需要得出:包含边(u,v)的最小生成树mst(u,v)

如何得出包含边(u,v)的最小生成树呢?

我们先求一次原图的最小生成树MST,在该生成树上添加边(u,v),就会形成一个环,我们要做的就是在树中去掉u到v唯一路径上的最大边权

如何求出u到v唯一路径上的最大边呢?

mc[u][v]表示节点u到v路径上的最大边,用数组记录访问过的节点x, 有mc[v][x] = max(mc[v][u], mc[u][x])  其中u是v的父亲

在CF上有一题就是求包含每一条边的最小生成树,我们也可以在原图的最小生成树上用LCA预处理出fa[u][i]表示节点u到其第2^i个祖先的路径上的最大边权,每次可以log得出u到v的最大边

#include <bits/stdc++.h>
using namespace std;
const int N = ;
struct Edge {
int u, v;
double w;
Edge() {}
Edge(int u, int v, double w):u(u),v(v),w(w) {}
friend bool operator < (Edge a, Edge b) {
return a.w < b.w;
}
};
Edge e[N * N * ];
int x[N], y[N], fa[N];
int p[N];
vector<Edge> g[N];
double dist(int i, int j) {
return sqrt((x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]) * 1.0);
}
int findx(int x) {
return fa[x] == x ? x:fa[x] = findx(fa[x]);
}
double MST(int m, int n) {
for(int i = ; i < n; ++i) fa[i] = i;
sort(e, e + m);
double ans = ;
int num = ;
for(int i = ; i < m; ++i)
{
int fu = findx(e[i].u);
int fv = findx(e[i].v);
if(fu == fv) continue;
num++;
fa[fu] = fv;
ans += e[i].w;
g[e[i].u].push_back(Edge(-,e[i].v, e[i].w));
g[e[i].v].push_back(Edge(-,e[i].u, e[i].w));
if(num == n - ) break;
}
return ans;
}
double mc[N][N];
int vis[N], cur[N], c;
void DFS(int u) {
vis[u] = ; cur[c++] = u;
int sx = g[u].size();
for(int i = ; i < sx; ++i) {
int v = g[u][i].v;
double w = g[u][i].w;
if(vis[v]) continue;
for(int j = ; j < c; ++j) {
int x = cur[j];
mc[v][x] = mc[x][v] = max(w, mc[x][u]);
}
DFS(v);
}
}
double solve(int n, double B) {
double ans = ;
for(int i = ; i < n; ++i) {
for(int j = i + ; j < n; ++j)
ans = max(ans, (p[i] + p[j]) * 1.0 / (B - mc[i][j]));
}
return ans;
}
int main()
{
int _; scanf("%d", &_);
while(_ --) {
int n; scanf("%d", &n);
for(int i = ; i < n; ++i) g[i].clear();
for(int i = ; i < n; ++i) scanf("%d%d%d", &x[i], &y[i], &p[i]);
int m = ;
for(int i = ; i < n; ++i)
for(int j = i + ; j < n; ++j) {
e[m++] = Edge(i, j, dist(i, j));
}
// for(int i = 0; i < m; ++i) printf("%d %d %f\n", e[i].u, e[i].v, e[i].w);
c = ;
memset(mc, , sizeof mc);
memset(vis, , sizeof vis);
double res = MST(m, n);
DFS();
printf("%.2f\n", solve(n, res));
}
return ;
}

Hdu 4081 最小生成树的更多相关文章

  1. hdu 4081 最小生成树+树形dp

    思路:直接先求一下最小生成树,然后用树形dp来求最优值.也就是两遍dfs. #include<iostream> #include<algorithm> #include< ...

  2. hdu 4081 最小生成树变形

    /*关于最小生成树的等效边,就是讲两个相同的集合连接在一起 先建立一个任意最小生成树,这条边分开的两个子树的节点最大的一个和为A,sum为最小生成树的权值和,B为sum-当前边的权值 不断枚举最小生成 ...

  3. Qin Shi Huang's National Road System HDU - 4081(树形dp+最小生成树)

    Qin Shi Huang's National Road System HDU - 4081 感觉这道题和hdu4756很像... 求最小生成树里面删去一边E1 再加一边E2 求该边两顶点权值和除以 ...

  4. HDU 1233(最小生成树)

    HDU 1233(最小生成树 模板) #include <iostream> #include <algorithm> #include <cstdio> usin ...

  5. HDU 4081 Qin Shi Huang's National Road System 最小生成树+倍增求LCA

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 Qin Shi Huang's National Road System Time Limit: ...

  6. hdu 4081 Qin Shi Huang's National Road System(最小生成树+dp)2011 Asia Beijing Regional Contest

    同样是看别人题解才明白的 题目大意—— 话说秦始皇统一六国之后,打算修路.他要用n-1条路,将n个城市连接起来,并且使这n-1条路的距离之和最短.最小生成树是不是?不对,还有呢.接着,一个自称徐福的游 ...

  7. HDU 4081 Qin Shi Huang's National Road System 最小生成树

    分析:http://www.cnblogs.com/wally/archive/2013/02/04/2892194.html 这个题就是多一个限制,就是求包含每条边的最小生成树,这个求出原始最小生成 ...

  8. HDU 4081 Qin Shi Huang&#39;s National Road System(最小生成树/次小生成树)

    题目链接:传送门 题意: 有n坐城市,知道每坐城市的坐标和人口.如今要在全部城市之间修路,保证每一个城市都能相连,而且保证A/B 最大.全部路径的花费和最小,A是某条路i两端城市人口的和,B表示除路i ...

  9. HDU 4081 Peach Blossom Spring (最小生成树+dfs)

    题意:给定一个 n 个点和相应的权值,要求你用 n-1 条边连接起来,其中一条边是魔法边,不用任何费用,其他的边是长度,求该魔法边的两端的权值与其他边费用的尽量大. 析:先求出最小生成树,然后再枚举每 ...

随机推荐

  1. SQL Server 数据库查找重复记录的几种方法

    http://www.hanyu123.cn/html/c61/6790.html 一.查某一列(或多列)的重复值.(只可以查出重复记录的值,不能查出整个记录的信息) 例如:查找stuid,stuna ...

  2. php常用字符串函数小结

    php内置了98个字符串函数(除了基于正则表达式的函数,正则表达式在此不在讨论范围),能够处理字符串中能遇到的每一个方面内容,本文对常用字符串函数进行简单的小结,主要包含以下8部分:1.确定字符串长度 ...

  3. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  4. golang笔记——array

    1.定义一个 array 数组长度也是类型的一部分,比如长度为3的int数组与长度为5的int数组,并不是同一类型. package main import ( "strconv" ...

  5. 开始学红帽的RHCE课堂有2次课了,要记下自己的学习经历

    我终于申请成功了博客园的博客了. 红帽课堂已经开始2次了,这里的记录可能不分顺序,每天记录一点自己的学习内容.方便自己以后查询. 已经学了以下内容: 1.访问命令行 使用桌面的访问命令 GNOME 3 ...

  6. Reprint: ADB is Not Recognized as an internal or external command Fix

    ADB: Android Debug Bridge http://zacktutorials.blogspot.hk/2013/04/adb-is-not-recognized-as-internal ...

  7. jQuery包装集

    jQuery包装集指的是通过$()方法返回的一个元素集,这跟一般的javascript数组有所区别, 包装集在后者的基础上还有一些初始化的函数和属性. 我们可以对二者进行一个比较: jsdiv = d ...

  8. MySQL关键字

    MySQL关键字 ADD ALL ALTER ANALYZE AND AS ASC ASENSITIVE BEFORE BETWEEN BIGINT BINARY BLOB BOTH BY CALL ...

  9. ReactiveCocoa源码拆分解析(二)

    (整个关于ReactiveCocoa的代码工程可以在https://github.com/qianhongqiang/QHQReactive下载) 上面抽丝剥茧的把最主要的信号机制给分离开了.但在RA ...

  10. java基础 泛型

    泛型的存在,是为了使用不确定的类型. 为什么有泛型? 1. 为了提高安全 2. 提高代码的重用率 (自动 装箱,拆箱功能) 一切好处看代码: package test1; import java.la ...