BZOJ 1076 & 撞鸭递推
题意:
还是看原题题面好...
你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关。在这个奖励关里,系统将依次随 机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃)。 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立。也就是说,即使前k-1次系统都抛出宝物1(这种情况是有可能出现的,尽管概率非常 小),第k次抛出各个宝物的概率依然均为1/n。 获取第i种宝物将得到Pi分,但并不是每种宝物都是可以随意获取的。第i种宝物有一个前提宝物集合Si。只有当Si中所有宝物都至少吃过一次,才能吃第i 种宝物(如果系统抛出了一个目前不能吃的宝物,相当于白白的损失了一次机会)。注意,Pi可以是负数,但如果它是很多高分宝物的前提,损失短期利益而吃掉 这个负分宝物将获得更大的长期利益。 假设你采取最优策略,平均情况你一共能在奖励关得到多少分值?
SOL:
感觉这题还是非常显然的...n,k非常小。。。撞鸭一下倒着推。。。
这题还是要倒着推,但原因非常显然,“现在决定不吃的宝物以后也不能再吃”,倒着推满足前提条件,与一般情况下的求期望还是感觉有一点不一样。。。反正对于期望为什么要倒着推这一点总是很雾。。。感觉知道了但是又不能很好地讲出来。。。
Code:
/*==========================================================================
# Last modified: 2016-03-22 18:19
# Filename: 3680.cpp
# Description:
==========================================================================*/
#define me AcrossTheSky
#include <cstdio>
#include <cmath>
#include <ctime>
#include <string>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm> #include <set>
#include <map>
#include <stack>
#include <queue>
#include <vector> #define lowbit(x) (x)&(-x)
#define FOR(i,a,b) for((i)=(a);(i)<=(b);(i)++)
#define FORP(i,a,b) for(int i=(a);i<=(b);i++)
#define FORM(i,a,b) for(int i=(a);i>=(b);i--)
#define ls(a,b) (((a)+(b)) << 1)
#define rs(a,b) (((a)+(b)) >> 1)
#define getlc(a) ch[(a)][0]
#define getrc(a) ch[(a)][1] #define maxn 10010
#define maxm 100000
#define pi 3.1415926535898
#define _e 2.718281828459
#define INF 1070000000
using namespace std;
typedef long long ll;
typedef unsigned long long ull; template<class T> inline
void read(T& num) {
bool start=false,neg=false;
char c;
num=0;
while((c=getchar())!=EOF) {
if(c=='-') start=neg=true;
else if(c>='0' && c<='9') {
start=true;
num=num*10+c-'0';
} else if(start) break;
}
if(neg) num=-num;
}
/*==================split line==================*/
ll p[20];
double f[105][100000];
int score[20],d[20];
int main(){
//freopen("a.in","r",stdin);
int k,n;
read(k); read(n);
p[1]=1;
FORP(i,2,16) p[i]=p[i-1]*2;
FORP(i,1,n){
read(score[i]); int x; read(x);
while (x!=0){
//d[i][0]++; d[i][d[i][0]]=x;
d[i]+=p[x];
read(x);
}
}
int cap=(1<<(n+1));
FORM(i,k,1){
FORP(j,0,cap){
FORP(l,1,n){
if ((d[l]&j)==d[l]) f[i][j]+=max(f[i+1][j],f[i+1][j|p[l]]+score[l]);
else f[i][j]+=f[i+1][j];
}
f[i][j]/=(double)n;
}
}
printf("%.6lf",f[1][0]);
}
BZOJ 1076 & 撞鸭递推的更多相关文章
- BZOJ 1002 FJOI2007 轮状病毒 递推+高精度
题目大意:轮状病毒基定义如图.求有多少n轮状病毒 这个递推实在是不会--所以我选择了打表找规律 首先执行下面程序 #include<cstdio> #include<cstring& ...
- bzoj[HNOI2015]亚瑟王 - 递推与动规 - 概率与期望
[bzoj4008][HNOI2015]亚瑟王 2015年4月22日3,2991 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之 ...
- HYSBZ(BZOJ) 4300 绝世好题(位运算,递推)
HYSBZ(BZOJ) 4300 绝世好题(位运算,递推) Description 给定一个长度为n的数列ai,求ai的子序列bi的最长长度,满足bi&bi-1!=0(2<=i<= ...
- bzoj 4161 Shlw loves matrixI——常系数线性齐次递推
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4161 还是不能理解矩阵…… 关于不用矩阵理解的方法:https://blog.csdn.ne ...
- 【BZOJ 1019】【SHOI2008】汉诺塔(待定系数法递推)
1019: [SHOI2008]汉诺塔 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 559 Solved: 341[Submit][Status] ...
- 【BZOJ】1089: [SCOI2003]严格n元树(递推+高精度/fft)
http://www.lydsy.com/JudgeOnline/problem.php?id=1089 题意:求深度为d的n元树数目.(0<n<=32, 0<=d<=16) ...
- 【递推】BZOJ 3930: [CQOI2015]选数
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...
- 【BZOJ】1002: [FJOI2007]轮状病毒 递推+高精度
1002: [FJOI2007]轮状病毒 Description 给定n(N<=100),编程计算有多少个不同的n轮状病毒. Input 第一行有1个正整数n. Output 将编程计算出的不同 ...
- Bzoj 1046: [HAOI2007]上升序列 二分,递推
1046: [HAOI2007]上升序列 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3671 Solved: 1255[Submit][Stat ...
随机推荐
- 关于Java集合的小抄
在尽可能短的篇幅里,将所有List.Map.Set.Queue的特征与实现方式捋一遍.适合所有"精通Java"其实还不那么自信的人阅读. List ArrayList 以数组实现. ...
- C# 的tcp Socket设置自定义超时时间
简单的c# TCP通讯(TcpListener) C# 的TCP Socket (同步方式) C# 的TCP Socket (异步方式) C# 的tcp Socket设置自定义超时时间 C# TCP ...
- reset.css css重置公共样式
@charset "utf-8";/*Css Document*/ /*! * @名称:reset.css * @功能:1.重设浏览器默认样式 * 2.设置通用原子类 *//* 防 ...
- mui jquery 同时使用
(function ($, doc, $$) { $.init(); $.ready(function () { var cityPicker = new $.PopPicker({ layer: } ...
- html5 新选择器 querySelector querySelectorAll
querySelector 返回满足条件的单个元素 使用实例 HTML <div id="main">主体布局</div> JS var main =doc ...
- 关于jquery 集合对象的 each和click方法的 思考 -$(this)的认识
1, 很重要的是: each: 是 自动遍历 集合中所有 item的, 是自动的; click: 包括其他所有的 "事件", 如mouseX事件, keyX事件等, 都不是 自动 ...
- oracle中时间处理
--查看当前日期.时间SQL> select sysdate from dual; SQL> select to_char(sysdate,'yyyy-mm-dd hh24:mi:ss') ...
- 什么时候用@Resource,什么时候用@service
Spring中什么时候用@Resource,什么时候用@service当你需要定义某个类为一个bean,则在这个类的类名前一行使用@Service("XXX"),就相当于讲这个类定 ...
- H5播放器
<!DOCTYPE html> <html> <body> <div style="text-align:center"> ...
- Go - 变量初始化 及 注意事项
Go变量 初始化 对 复合类型(数组.切片.字典.结构体)变量的初始化是,有一些语法限制: 1.初始化表达式必须包含类型标签: 2.左花括号必须在类型尾部,不能另起一行: 3.多个成员初始值以逗号分隔 ...