E. Pig and Palindromes

Peppa the Pig was walking and walked into the forest. What a strange coincidence! The forest has the shape of a rectangle, consisting of n rows and m columns. We enumerate the rows of the rectangle from top to bottom with numbers from 1 to n, and the columns — from left to right with numbers from 1 to m. Let’s denote the cell at the intersection of the r-th row and the c-th column as (r, c).

Initially the pig stands in cell (1, 1), and in the end she wants to be in cell (n, m). Since the pig is in a hurry to get home, she can go from cell (r, c), only to either cell (r + 1, c) or (r, c + 1). She cannot leave the forest.

The forest, where the pig is, is very unusual. Some cells of the forest similar to each other, and some look very different. Peppa enjoys taking pictures and at every step she takes a picture of the cell where she is now. The path through the forest is considered to be beautiful if photographs taken on her way, can be viewed in both forward and in reverse order, showing the same sequence of photos. More formally, the line formed by the cells in order of visiting should be a palindrome (you can read a formal definition of a palindrome in the previous problem).

Count the number of beautiful paths from cell (1, 1) to cell (n, m). Since this number can be very large, determine the remainder after dividing it by 109 + 7.

Input

The first line contains two integers n, m (1 ≤ n, m ≤ 500) — the height and width of the field.

Each of the following n lines contains m lowercase English letters identifying the types of cells of the forest. Identical cells are represented by identical letters, different cells are represented by different letters.

Output

Print a single integer — the number of beautiful paths modulo 109 + 7.

Sample test(s)

input

3 4

aaab

baaa

abba

output

3

题意概述:在一个n*m的矩阵中,每个格子都有一个字母。你从(1,1)出发前往(n,m),每次仅仅能向下或向右。当到达终点时,把你经过的字母写下来。产生一个字符串。求有多少种走成回文的方案。

每一次仅仅能向下或向右。所以考虑能够用dp做。考虑曼哈顿距离

按距离原点和终点的曼哈顿距离同样的两个点做状态转移

想象有两个点分别从起点和终点同一时候向中间走

用f[p1][p2] 表示 第一个点在p1位置第二个点在p2位置时的从起点终点同一时候走过的同样字母路径的合法状态数

f[p1][p2]=f[p1_f1][p2_f1]+f[p1_f1][p2_f2]+f[p1_f2][p2_f1]+f[p1_f2][p2_f2]

p1_f1,p1_f2,p2_f1,p2_f2分别表示p1和p2的前驱点

因为坐标非常大,须要用滚动数组优化。斜着循环每个点也须要一些小技巧详细看代码~

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
using namespace std;
const int MAX=505;
const int MOD=1e9+7;
char s[MAX][MAX];
int f[MAX][MAX]={0};
int f_[MAX][MAX];
int i,j,m,n,k,dis;
struct point{
int x,y;
};
point next_1(point a)
{
if (a.y==1&&a.x<n)
a.x++;
else
a.y++;
return a;
}
point next_2(point a)
{
if (a.x==n&&a.y>1)
a.y--;
else
a.x--;
return a;
}
point nex(point a)
{
a.x--;
a.y++;
return a;
}
int main()
{
cin>>n>>m;
int ans=0;
getchar();
for (i=1;i<=n;i++)
{
for (j=1;j<=m;j++)
scanf("%c",&s[i][j]);
getchar();
}
point a,b,p1,p2;
a.x=a.y=1;
b.x=n;b.y=m;
int max_=(m+n)/2;
if (s[1][1]==s[n][m])
f[1][n]=1;
else
f[1][n]=0;
if (m+n<=3)
{
cout<<f[1][n]<<endl;
return 0;
}
for (dis=2;dis<=max_;dis++)
{
a=next_1(a);
b=next_2(b);
for (i=1;i<=500;i++)
for (j=1;j<=500;j++)
{
f_[i][j]=f[i][j];
f[i][j]=0;
}
for (p1=a;p1.y<=m&&p1.x>=1;p1=nex(p1))
for (p2=b;p2.y<=m&&p2.x>=1;p2=nex(p2))
if (s[p1.x][p1.y]==s[p2.x][p2.y])
{
f[p1.x][p2.x]=((f_[p1.x-1][p2.x]+f_[p1.x-1][p2.x+1])%MOD+(f_[p1.x][p2.x]+f_[p1.x][p2.x+1])%MOD)%MOD;
if (((p1.x==p2.x)&&(abs(p1.y-p2.y)<=1))||((p1.y==p2.y)&&(abs(p1.x-p2.x)<=1)))
ans=(ans+f[p1.x][p2.x])%MOD;
}
}
cout<<ans<<endl;
return 0;
}

贴一个cf上看到的位运算的程序,相当简短

#include <bits/stdc++.h>
using namespace std;
#define f(i,n) for(int i=0;i<(n);i++)
#define fr(i,n) for(int i=n;i--;)
char x[500][501];
int d[2][501][501],n,m;
main(){
cin>>n>>m;
f(i,n) cin>>x[i];
f(ei,n) fr(si,n) fr(sj,m){
auto& c=d[ei&1][si][sj]=0,ej=n+m-2-si-sj-ei;
if(si<=ei&&sj<=ej&&x[si][sj]==x[ei][ej]&&!(c=abs(si-ei)+abs(sj-ej)<=1))
f(i,2) f(j,2) c=(c+d[ei-!j&1][si+!i][sj+!!i])%((int)1e9+7);
}
cout<<d[~n&1][0][0]<<'\n';
}

CF 316div2 E.Pig and Palindromes的更多相关文章

  1. codeforces 570 E. Pig and Palindromes (DP)

    题目链接: 570 E. Pig and Palindromes 题目描述: 有一个n*m的矩阵,每个小格子里面都有一个字母.Peppa the Pig想要从(1,1)到(n, m).因为Peppa ...

  2. Codeforces Round #316 (Div. 2)E. Pig and Palindromes DP

    E. Pig and Palindromes   Peppa the Pig was walking and walked into the forest. What a strange coinci ...

  3. 【25.64%】【codeforces 570E】Pig and Palindromes

    time limit per test4 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  4. Codeforces 570E - Pig and Palindromes - [滚动优化DP]

    题目链接:https://codeforces.com/problemset/problem/570/E 题意: 给出 $n \times m$ 的网格,每一格上有一个小写字母,现在从 $(1,1)$ ...

  5. D Tree Requests dfs+二分 D Pig and Palindromes -dp

    D time limit per test 2 seconds memory limit per test 256 megabytes input standard input output stan ...

  6. CF570E Pig and Palindromes

    完全不会这种类型的$dp$啊…… 考虑回文串一定是可以拆分成(偶数个字母 + 偶数个字母)或者(偶数个字母 + 一个字母 +偶数个字母),两边的偶数个字母其实是完全对称的.因为这道题回文串的长度是给定 ...

  7. CodeForces 570E DP Pig and Palindromes

    题意:给出一个n行m列的字符矩阵,从左上角走到右下角,每次只能往右或者往下走,求一共有多少种走法能得到回文串. 分析: 可以从两头开始考虑,每次只走一样字符的格子,这样得到的两个字符串拼起来之后就是一 ...

  8. Codeforces 570 - A/B/C/D/E - (Done)

    链接:https://codeforces.com/contest/570 A - Elections - [水] AC代码: #include<bits/stdc++.h> using ...

  9. CF 568A(Primes or Palindromes?-暴力推断)

    A. Primes or Palindromes? time limit per test 3 seconds memory limit per test 256 megabytes input st ...

随机推荐

  1. hdu6191(树上启发式合并)

    hdu6191 题意 给你一棵带点权的树,每次查询 \(u\) 和 \(x\) ,求以 \(u\) 为根结点的子树上的结点与 \(x\) 异或后最大的结果. 分析 看到子树,直接上树上启发式合并,看到 ...

  2. hdu6162(树链剖分)

    hdu6162 题意 给出一颗带点权的树,每次询问一对节点 \((u, v)\),问 \(u\) 到 \(v\) 的最短路径上所有节点权值在 \([c1, c2]\) 区间内的和. 分析 树链剖分,那 ...

  3. luogu P1026 统计单词个数

    题目链接 luogu P1026 统计单词个数 题解 贪心的预处理母本串从i到j的最大单词数 然后dp[i][j] 表示从前i个切了k次最优解 转移显然 代码 #include<cstdio&g ...

  4. 【分块】hdu5057 Argestes and Sequence

    分块,v[i][j][k]表示第i块内第j位是k的元素数.非常好写.注意初始化 要注意题意,①第i位是从右往左算的. ②若x没有第i位,则用前导零补齐10位.比如103---->00000001 ...

  5. 【后缀数组】uoj#35. 后缀排序

    模板 #include<cstdio> #include<algorithm> #include<cstring> using namespace std; #de ...

  6. 【带修莫队】bzoj2120 数颜色

    块大小为n2/3. 把询问和修改分开. 每次两个询问之间的修改进行暴力转移,如果修改在上一次询问的区间里,就会对当前状态形成影响. 好慢. #include<cstdio> #includ ...

  7. React Native 让组件做到局部刷新

    利用RN的状态机机制,我们可以通过this.setState({optional:...})来控制界面的刷新,但是一定会触发render方法,那如何保证不调用render方法从而做到界面的局部刷新呢? ...

  8. 【记录一下】phpMyAdmin 4.5.0-beta1 发布,要求 PHP 5.5

    详情点击: [开源中国]http://www.oschina.net/news/65696/phpmyadmin-4-5-0-beta1 [phpMyAdmin]https://www.phpmyad ...

  9. How can I create a dump of SQL Server?

    https://blogs.msdn.microsoft.com/askjay/2009/12/29/basic-debugging-concepts-and-setup/ You can creat ...

  10. ueditor-angular(百度编辑器angular版)中,关于插入图片后不操作,图片无法正常提交的问题;

    由于项目后台管理页面中需要使用编辑器,所以选择了百度编辑器这个常用的东西: 本人是小白,第一次使用百度编辑器,具体的配置是由后台的兄弟完成的,还给了demo,所以在项目开发中也一直都没发现什么问题: ...