康托展开与逆康托展开模板(O(n^2)/O(nlogn))
O(n2)方法:
namespace Cantor {
const int N=;
int fac[N];
void init() {
fac[]=;
for(int i=; i<N; ++i)fac[i]=fac[i-]*i;
}
int encode(int* a,int n) {
int ret=;
for(int i=n-; i>=; --i) {
int cnt=;
for(int j=i+; j<n; ++j)if(a[j]<a[i])++cnt;
ret+=cnt*fac[n--i];
}
return ret;
}
vector<int> decode(int x,int n) {
vector<int> ret;
vector<int> v;
for(int i=; i<=n; ++i)v.push_back(i);
for(int i=n-; i>=; --i) {
ret.push_back(v[x/fac[i]]);
v.erase(v.begin()+x/fac[i]);
x%=fac[i];
}
return ret;
}
}
O(nlogn)方法(树状数组辅助):
namespace Cantor {
const int N=;
int fac[N],c[N],n,m;
void init() {
fac[]=;
for(int i=; i<N; ++i)fac[i]=fac[i-]*i;
}
void setn(int _n) {
n=_n;
m=;
while(m<=n)m<<=;
for(int i=; i<m; ++i)c[i]=;
}
int lowbit(int x) {
return x&-x;
}
void add(int u,int x) {
while(u<m) {
c[u]+=x;
u+=lowbit(u);
}
}
int rnk(int u) {
int ret=;
while(u) {
ret+=c[u];
u-=lowbit(u);
}
return ret;
}
int kth(int k) {
int ret=;
for(int i=m>>; i; i>>=) {
if(c[ret+i]<k) {
ret+=i;
k-=c[ret];
}
}
return ret+;
}
int encode(int* a,int _n) {
setn(_n);
int ret=;
for(int i=n-; i>=; --i) {
ret+=rnk(a[i])*fac[n--i];
add(a[i],);
}
return ret;
}
vector<int> decode(int x,int _n) {
setn(_n);
vector<int> ret;
for(int i=; i<=n; ++i)add(i,);
for(int i=n-; i>=; --i) {
int t=kth(x/fac[i]+);
ret.push_back(t);
add(t,-);
x%=fac[i];
}
return ret;
}
}
测试代码:
int main() {
Cantor::init();
int a[]= {,,,};
do {
printf("%d\n",Cantor::encode(a,));
} while(next_permutation(a,a+));
for(int i=; i<; ++i) {
vector<int> v=Cantor::decode(i,);
for(int i=; i<v.size(); ++i)printf("%d%c",v[i]," \n"[i==v.size()-]);
}
return ;
}
输出结果:
康托展开与逆康托展开模板(O(n^2)/O(nlogn))的更多相关文章
- nyoj 139——我排第几个|| nyoj 143——第几是谁? 康托展开与逆康托展开
讲解康托展开与逆康托展开.http://wenku.baidu.com/view/55ebccee4afe04a1b071deaf.html #include<bits/stdc++.h> ...
- 康拓展开 & 逆康拓展开 知识总结(树状数组优化)
康拓展开 : 康拓展开,难道他是要飞翔吗?哈哈,当然不是了,康拓具体是哪位大叔,我也不清楚,重要的是 我们需要用到它后面的展开,提到展开,与数学相关的,肯定是一个式子或者一个数进行分解,即 展开. 到 ...
- HDU1027 Ignatius and the Princess II( 逆康托展开 )
链接:传送门 题意:给出一个 n ,求 1 - n 全排列的第 m 个排列情况 思路:经典逆康托展开,需要注意的时要在原来逆康托展开的模板上改动一些地方. 分析:已知 1 <= M <= ...
- LightOJ1060 nth Permutation(不重复全排列+逆康托展开)
一年多前遇到差不多的题目http://acm.fafu.edu.cn/problem.php?id=1427. 一开始我还用搜索..后来那时意外找到一个不重复全排列的计算公式:M!/(N1!*N2!* ...
- 题解报告:NYOJ 题目143 第几是谁?(逆康托展开)
描述 现在有"abcdefghijkl”12个字符,将其按字典序排列,如果给出任意一种排列,我们能说出这个排列在所有的排列中是第几小的.但是现在我们给出它是第几小,需要你求出它所代表的序列. ...
- 康托展开&逆康托展开学习笔记
啊...好久没写了...可能是最后一篇学习笔记了吧 题目大意:给定序列求其在全排列中的排名&&给定排名求排列. 这就是康托展开&&逆康托展开要干的事了.下面依次介绍 一 ...
- Codeforces-121C(逆康托展开)
题目大意: 给你两个数n,k求n的全排列的第k小,有多少满足如下条件的数: 首先定义一个幸运数字:只由4和7构成 对于排列p[i]满足i和p[i]都是幸运数字 思路: 对于n,k<=1e9 一眼 ...
- CDOJ 485 UESTC 485 Game (八数码变形,映射,逆cantor展开)
题意:八数码,但是转移的方式是转动,一共十二种,有多组询问,初态唯一,终态不唯一. 题解:初态唯一,那么可以预处理出012345678的所有转移情况,然后将初态对012345678做一个映射,再枚举一 ...
- hdu 1027 Ignatius and the Princess II(正、逆康托)
题意: 给N和M. 输出1,2,...,N的第M大全排列. 思路: 将M逆康托,求出a1,a2,...aN. 看代码. 代码: int const MAXM=10000; int fac[15]; i ...
随机推荐
- awk的逻辑运算符
运算符 描述 赋值运算符 = += -= *= /= %= ^= **= 赋值语句 逻辑运算符 || 逻辑或 && 逻辑与 正则运算符 ~ ~! 匹配正则表达式和不匹配正则表达式 关系 ...
- iOS下的WiFi开发
iOS下Wi-Fi开发需要添加依赖库SystemConfiguration.framework,在需要使用Wi-Fi信息的控制器下引入头文件#import <SystemConfiguratio ...
- MVC6 OWin Microsoft Identity 自定义验证
1. Startup.cs中修改默认的验证设置 //app.UseIdentity(); app.UseCookieAuthentication(options => { //options.A ...
- FreeMarker缓存处理
FreeMarker 的缓存处理主要用于模版文件的缓存,一般来讲,模版文件改动不会很频繁,在一个流量非常大的网站中,如果频繁的读取模版文件对系统的负担还是很重的,因此 FreeMarker 通过将模版 ...
- Could not reserve enough space for object heap解决办法
Centos6.4 Jdk1.6 1.在终端输入Java命令报错 [root@localhost local]# java Error occurred during initialization ...
- SG函数略解
由于笔者太懒,懒得把原来的markdown改成MCE,所以有很多奇怪的地方请谅解. 先说nim游戏. 大意:有n堆石子,两个人轮流取,每个人每次从任意一堆取任意个,直到一个人无法取了为止.问对于石子的 ...
- 织梦dedecms 自带采集的缩略图地址后面有“/”斜杠的解决方法
本来想偷懒在网上找一些文档去解决织梦采集缩略图地址带“/”的问题的,可是找了找发现没有人写出解决方法,只好自己动手了. 过程很复杂,找了问题的原因也是找了半天,自己一点一点的测试.最后找到了问题所在. ...
- Spark 属性配置
1.Spark1.x 属性配置方式 Spark属性提供了大部分应用程序的控制项,并且可以单独为每个应用程序进行配置. 在Spark1.0.0提供了3种方式的属性配置: SparkConf方式 Spar ...
- Codeforces Round #372 (Div. 2) A ,B ,C 水,水,公式
A. Crazy Computer time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
- javascript是一种面向对象语言吗?如果是,您在javascript中是如何实现继承的呢
·oop(面向对象程序设计)中最常用到的概念有 1.对象,属性,方法 1>(对象:具体事物或抽象事物,名词) 2>(属性:对象的特征,特点,形容词) 3>(方法:对象的动作,动词) ...