康托展开与逆康托展开模板(O(n^2)/O(nlogn))
O(n2)方法:
namespace Cantor {
const int N=;
int fac[N];
void init() {
fac[]=;
for(int i=; i<N; ++i)fac[i]=fac[i-]*i;
}
int encode(int* a,int n) {
int ret=;
for(int i=n-; i>=; --i) {
int cnt=;
for(int j=i+; j<n; ++j)if(a[j]<a[i])++cnt;
ret+=cnt*fac[n--i];
}
return ret;
}
vector<int> decode(int x,int n) {
vector<int> ret;
vector<int> v;
for(int i=; i<=n; ++i)v.push_back(i);
for(int i=n-; i>=; --i) {
ret.push_back(v[x/fac[i]]);
v.erase(v.begin()+x/fac[i]);
x%=fac[i];
}
return ret;
}
}
O(nlogn)方法(树状数组辅助):
namespace Cantor {
const int N=;
int fac[N],c[N],n,m;
void init() {
fac[]=;
for(int i=; i<N; ++i)fac[i]=fac[i-]*i;
}
void setn(int _n) {
n=_n;
m=;
while(m<=n)m<<=;
for(int i=; i<m; ++i)c[i]=;
}
int lowbit(int x) {
return x&-x;
}
void add(int u,int x) {
while(u<m) {
c[u]+=x;
u+=lowbit(u);
}
}
int rnk(int u) {
int ret=;
while(u) {
ret+=c[u];
u-=lowbit(u);
}
return ret;
}
int kth(int k) {
int ret=;
for(int i=m>>; i; i>>=) {
if(c[ret+i]<k) {
ret+=i;
k-=c[ret];
}
}
return ret+;
}
int encode(int* a,int _n) {
setn(_n);
int ret=;
for(int i=n-; i>=; --i) {
ret+=rnk(a[i])*fac[n--i];
add(a[i],);
}
return ret;
}
vector<int> decode(int x,int _n) {
setn(_n);
vector<int> ret;
for(int i=; i<=n; ++i)add(i,);
for(int i=n-; i>=; --i) {
int t=kth(x/fac[i]+);
ret.push_back(t);
add(t,-);
x%=fac[i];
}
return ret;
}
}
测试代码:
int main() {
Cantor::init();
int a[]= {,,,};
do {
printf("%d\n",Cantor::encode(a,));
} while(next_permutation(a,a+));
for(int i=; i<; ++i) {
vector<int> v=Cantor::decode(i,);
for(int i=; i<v.size(); ++i)printf("%d%c",v[i]," \n"[i==v.size()-]);
}
return ;
}
输出结果:
康托展开与逆康托展开模板(O(n^2)/O(nlogn))的更多相关文章
- nyoj 139——我排第几个|| nyoj 143——第几是谁? 康托展开与逆康托展开
讲解康托展开与逆康托展开.http://wenku.baidu.com/view/55ebccee4afe04a1b071deaf.html #include<bits/stdc++.h> ...
- 康拓展开 & 逆康拓展开 知识总结(树状数组优化)
康拓展开 : 康拓展开,难道他是要飞翔吗?哈哈,当然不是了,康拓具体是哪位大叔,我也不清楚,重要的是 我们需要用到它后面的展开,提到展开,与数学相关的,肯定是一个式子或者一个数进行分解,即 展开. 到 ...
- HDU1027 Ignatius and the Princess II( 逆康托展开 )
链接:传送门 题意:给出一个 n ,求 1 - n 全排列的第 m 个排列情况 思路:经典逆康托展开,需要注意的时要在原来逆康托展开的模板上改动一些地方. 分析:已知 1 <= M <= ...
- LightOJ1060 nth Permutation(不重复全排列+逆康托展开)
一年多前遇到差不多的题目http://acm.fafu.edu.cn/problem.php?id=1427. 一开始我还用搜索..后来那时意外找到一个不重复全排列的计算公式:M!/(N1!*N2!* ...
- 题解报告:NYOJ 题目143 第几是谁?(逆康托展开)
描述 现在有"abcdefghijkl”12个字符,将其按字典序排列,如果给出任意一种排列,我们能说出这个排列在所有的排列中是第几小的.但是现在我们给出它是第几小,需要你求出它所代表的序列. ...
- 康托展开&逆康托展开学习笔记
啊...好久没写了...可能是最后一篇学习笔记了吧 题目大意:给定序列求其在全排列中的排名&&给定排名求排列. 这就是康托展开&&逆康托展开要干的事了.下面依次介绍 一 ...
- Codeforces-121C(逆康托展开)
题目大意: 给你两个数n,k求n的全排列的第k小,有多少满足如下条件的数: 首先定义一个幸运数字:只由4和7构成 对于排列p[i]满足i和p[i]都是幸运数字 思路: 对于n,k<=1e9 一眼 ...
- CDOJ 485 UESTC 485 Game (八数码变形,映射,逆cantor展开)
题意:八数码,但是转移的方式是转动,一共十二种,有多组询问,初态唯一,终态不唯一. 题解:初态唯一,那么可以预处理出012345678的所有转移情况,然后将初态对012345678做一个映射,再枚举一 ...
- hdu 1027 Ignatius and the Princess II(正、逆康托)
题意: 给N和M. 输出1,2,...,N的第M大全排列. 思路: 将M逆康托,求出a1,a2,...aN. 看代码. 代码: int const MAXM=10000; int fac[15]; i ...
随机推荐
- Django:popup弹出框简单应用实例
效果:在p1.html页面点击,弹出p2的弹出框,填写数据,在 popup_response页面处理数据 1.url设置 urlpatterns = patterns( url(r'^p1.html' ...
- Loadrunder之脚本篇——参数化同行取值
select next row 记录选择方式 Same line as,这个选项只有当参数多余一个时才会出现,其作用是根据某一个参数的行号取同一行. 例中的做法如下: 将多个参数存放在一个参数文件中: ...
- iOS CMTimeMake 和 CMTimeMakeWithSeconds 学习
CMTime是专门用于标识电影时间的结构体,通常用如下两个函数来创建CMTime (1)CMTimeMake CMTime CMTimeMake ( int64_t value, //表示 当前视频播 ...
- C++ IPv4与IPv6的兼容编码(转,出自http://blog.csdn.net/ligt0610/article/details/18667595)
这里不再对IPv6 socket相关编程的基础知识进行讲解,只提供一个IP协议无关的服务端和客户端的代码,仅供参考. 服务端代码: #include <iostream> #include ...
- 13.常见模块re-正则模块
1.正则 正则表达式是计算机科学的一个概念,正则表通常被用来检索.替换那些符合某个模式(规则)的文本.也就是说使用正则表达式可以在字符串中匹配出你需要的字符或者字符串,甚至可以替换你不需要的字符或者字 ...
- SpringBoot 入门笔记
1. Spring 4.3中引入了: @GetMapping @PostMapping @PutMapping @DeleteMapping @PatchMapping 2. @RequestMapp ...
- 用java.lang.Math.random()语句,随机输出{size:自定义参数}个数不重复并且按顺序从小到大排列(冒泡排序)
package com.test; import java.lang.reflect.Field; import java.lang.reflect.Modifier; import java.lan ...
- HDFS数据流-剖析文件读取及写入
HDFS数据流-剖析文件读取及写入 文件读取 1. 客户端通过调用FileSystem对象的open方法来打开希望读取的文件,对于HDFS来说,这个对象是分布式文件系统的一个实例.2. Distrib ...
- UVA 11186 Circum Triangle (枚举三角形优化)(转)
题意:圆上有n个点,求出这n个点组成的所有三角形的面积之和 题解: 当我们要求出S(i,j,k)时,我们需要假设k在j的左侧,k在i与j之间,k在i的右侧. 如果k在 j的左侧 那么 S(i,j,k ...
- PrepareStatement
import java.sql.DriverManager; import java.sql.Connection; import java.sql.PreparedStatement; import ...