浅谈KL散度

一、第一种理解  

相对熵(relative entropy)又称为KL散度(Kullback–Leibler divergence,简称KLD),信息散度(information divergence),信息增益(information gain)。

  KL散度是两个概率分布P和Q差别的非对称性的度量。

KL散度是用来度量使用基于Q的编码来编码来自P的样本平均所需的额外的比特个数。 典型情况下,P表示数据的真实分布,Q表示数据的理论分布,模型分布,或P的近似分布。

根据shannon的信息论,给定一个字符集的概率分布,我们可以设计一种编码,使得表示该字符集组成的字符串平均需要的比特数最少。假设这个字符集是X,对x∈X,其出现概率为P(x),那么其最优编码平均需要的比特数等于这个字符集的熵:

  H(X)=∑x∈XP(x)log[1/P(x)]

  在同样的字符集上,假设存在另一个概率分布Q(X)。如果用概率分布P(X)的最优编码(即字符x的编码长度等于log[1/P(x)]),来为符合分布Q(X)的字符编码,那么表示这些字符就会比理想情况多用一些比特数。KL-divergence就是用来衡量这种情况下平均每个字符多用的比特数,因此可以用来衡量两个分布的距离。即:

  DKL(Q||P)=∑x∈XQ(x)[log(1/P(x))] - ∑x∈XQ(x)[log[1/Q(x)]]=∑x∈XQ(x)log[Q(x)/P(x)]

  由于-log(u)是凸函数,因此有下面的不等式

  DKL(Q||P) = -∑x∈XQ(x)log[P(x)/Q(x)] = E[-logP(x)/Q(x)] ≥ -logE[P(x)/Q(x)] = -  log∑x∈XQ(x)P(x)/Q(x) = 0

  即KL-divergence始终是大于等于0的。当且仅当两分布相同时,KL-divergence等于0。

  ===========================

  举一个实际的例子吧:比如有四个类别,一个方法A得到四个类别的概率分别是0.1,0.2,0.3,0.4。另一种方法B(或者说是事实情况)是得到四个类别的概率分别是0.4,0.3,0.2,0.1,那么这两个分布的KL-Distance(A,B)=0.1*log(0.1/0.4)+0.2*log(0.2/0.3)+0.3*log(0.3/0.2)+0.4*log(0.4/0.1)

  这个里面有正的,有负的,可以证明KL-Distance()>=0.

  从上面可以看出, KL散度是不对称的。即KL-Distance(A,B)!=KL-Distance(B,A)

  KL散度是不对称的,当然,如果希望把它变对称,

  Ds(p1, p2) = [D(p1, p2) + D(p2, p1)] / 2.

二、第二种理解

  今天开始来讲相对熵,我们知道信息熵反应了一个系统的有序化程度,一个系统越是有序,那么它的信息熵就越低,反之就越高。下面是熵的定义

如果一个随机变量的可能取值为,对应的概率为,则随机变量的熵定义为

  有了信息熵的定义,接下来开始学习相对熵。

  1. 相对熵的认识

相对熵又称互熵,交叉熵,鉴别信息,Kullback熵,Kullback-Leible散度(即KL散度)等。设

取值的两个概率概率分布,则的相对熵为

在一定程度上,熵可以度量两个随机变量的距离。KL散度是两个概率分布P和Q差别的非对称性的度量。KL散度是

用来度量使用基于Q的编码来编码来自P的样本平均所需的额外的位元数。 典型情况下,P表示数据的真实分布,Q

表示数据的理论分布,模型分布,或P的近似分布。

2. 相对熵的性质

相对熵(KL散度)有两个主要的性质。如下

(1)尽管KL散度从直观上是个度量或距离函数,但它并不是一个真正的度量或者距离,因为它不具有对称性,即

(2)相对熵的值为非负值,即

在证明之前,需要认识一个重要的不等式,叫做吉布斯不等式。内容如下

3. 相对熵的应用

相对熵可以衡量两个随机分布之间的距离,当两个随机分布相同时,它们的相对熵为零,当两个随机分布的差别增

大时,它们的相对熵也会增大。所以相对熵(KL散度)可以用于比较文本的相似度,先统计出词的频率,然后计算

KL散度就行了。另外,在多指标系统评估中,指标权重分配是一个重点和难点,通过相对熵可以处理。

4.交叉熵与相对熵


参考:http://www.cnblogs.com/hxsyl/p/4910218.html

https://www.zhihu.com/question/41252833


ELBO(证据下界)

网上关于ELBO的内容较少,主要常出现在变分推断当中。

例如在用EM处理LDA主题模型时,

看看文档数据的对数似然函数 如下,为了简化表示,用 代替 ,用来表示 对于变分分布 的期望。

其中,从第(5)式到第(6)式用到了Jensen不等式:

一般把第(7)式记为:

由于 是我们的对数似然的一个下界(第6式),所以这个L一般称为ELBO(Evidence Lower BOund)。那么这个ELBO和我们需要优化的的KL散度有什么关系呢?注意到:

在(10)式中,由于对数似然部分和我们的KL散度无关,可以看做常量,因此我们希望最小化KL散度等价于最大化ELBO。那么我们的变分推断最终等价的转化为要求ELBO的最大值。现在我们开始关注于极大化ELBO并求出极值对应的变分参数λ,ϕ,γ。


参考文献:https://zhuanlan.zhihu.com/p/29932017

ELBO 与 KL散度的更多相关文章

  1. 【原】浅谈KL散度(相对熵)在用户画像中的应用

    最近做用户画像,用到了KL散度,发现效果还是不错的,现跟大家分享一下,为了文章的易读性,不具体讲公式的计算,主要讲应用,不过公式也不复杂,具体可以看链接. 首先先介绍一下KL散度是啥.KL散度全称Ku ...

  2. PRML读书会第十章 Approximate Inference(近似推断,变分推断,KL散度,平均场, Mean Field )

    主讲人 戴玮 (新浪微博: @戴玮_CASIA) Wilbur_中博(1954123) 20:02:04 我们在前面看到,概率推断的核心任务就是计算某分布下的某个函数的期望.或者计算边缘概率分布.条件 ...

  3. paper 23 :Kullback–Leibler divergence KL散度(2)

    Kullback–Leibler divergence KL散度 In probability theory and information theory, the Kullback–Leibler ...

  4. 浅谈KL散度

    一.第一种理解 相对熵(relative entropy)又称为KL散度(Kullback–Leibler divergence,简称KLD),信息散度(information divergence) ...

  5. 非负矩阵分解(1):准则函数及KL散度

    作者:桂. 时间:2017-04-06  12:29:26 链接:http://www.cnblogs.com/xingshansi/p/6672908.html 声明:欢迎被转载,不过记得注明出处哦 ...

  6. 【机器学习基础】熵、KL散度、交叉熵

    熵(entropy).KL 散度(Kullback-Leibler (KL) divergence)和交叉熵(cross-entropy)在机器学习的很多地方会用到.比如在决策树模型使用信息增益来选择 ...

  7. KL散度、JS散度、Wasserstein距离

    1. KL散度 KL散度又称为相对熵,信息散度,信息增益.KL散度是是两个概率分布 $P$ 和 $Q$  之间差别的非对称性的度量. KL散度是用来 度量使用基于 $Q$ 的编码来编码来自 $P$ 的 ...

  8. KL散度

    摘自: https://www.jianshu.com/p/43318a3dc715?from=timeline&isappinstalled=0 一.解决的问题 量化两种概率分布P和Q可以使 ...

  9. 深度学习中交叉熵和KL散度和最大似然估计之间的关系

    机器学习的面试题中经常会被问到交叉熵(cross entropy)和最大似然估计(MLE)或者KL散度有什么关系,查了一些资料发现优化这3个东西其实是等价的. 熵和交叉熵 提到交叉熵就需要了解下信息论 ...

随机推荐

  1. javascript (function() { /* code */ })() 自执行函数

    (function(){ function a(){ alert("a"); } })(); 自执行匿名函数: 常见格式:(function() { /* code */ })() ...

  2. 李洪强iOS开发之大神必备的Xcode插件

    iOS开发大神必备的Xcode插件 写在前面 工欲善其事,必先利其器,iOS开发中不仅要学会Xcode的基本操作,而且还得学会一些Xcode的使用技巧,如掌握常用的快捷键等,还有就是今天要说到的Xco ...

  3. wireshark抓包常见提示含义解析

    原文转自:http://blog.sina.com.cn/s/blog_987e00020102wq60.html http://www.cnblogs.com/redsmith/p/5462547. ...

  4. struts2的validate在使用过程中的一个问题

    在项目中有一个新增客户信息的的功能:  1.在进入加入页面:add.jsp页面之前,要调用一个add_init.do来获取省份信息列表以供在add.jsp进行选择. 2.add页面填写完毕以后.提交给 ...

  5. linux虚拟文件系统vfs

    linux可以挂载不同的文件系统(EXT2,FAT,NTFS),用同一的样式呈现给用户,读写操作用起来都一样,这是怎样做到的呢? linux内核在各种不同的文件系统格式上做了一个抽象层,使得文件.目录 ...

  6. UVA11082 Matrix Decompressing 最大流建模解矩阵,经典

    /** 题目:UVA11082 Matrix Decompressing 链接:https://vjudge.net/problem/UVA-11082 题意:lrj入门经典P374 已知一个矩阵的行 ...

  7. hdu5800 To My Girlfriend dp 需要比较扎实的dp基础。

    To My Girlfriend Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  8. python第二周数据类型 字符编码 文件处理

    第一数据类型需要学习的几个点: 用途 定义方式 常用操作和内置的方法 该类型总结: 可以存一个值或者多个值 只能存储一个值 可以存储多个值,值都可以是什么类型 有序或者无序 可变或者不可变 二:数字整 ...

  9. web.xml文件:

    在web.xml配置文件是一个的J2EE配置文件,决定如何处理HTTP请求servlet容器的元素.它不是严格意义上的Struts2的配置文件,但它是一个文件,需要配置Struts2的工作. 正如前面 ...

  10. CentOS 5 上安装Oracle11g

    原创作品,出自 "深蓝的blog" 博客.欢迎转载.转载时请务必注明下面出处.否则追究版权法律责任. 深蓝的blog:http://blog.csdn.net/huangyanlo ...