浅谈KL散度

一、第一种理解  

相对熵(relative entropy)又称为KL散度(Kullback–Leibler divergence,简称KLD),信息散度(information divergence),信息增益(information gain)。

  KL散度是两个概率分布P和Q差别的非对称性的度量。

KL散度是用来度量使用基于Q的编码来编码来自P的样本平均所需的额外的比特个数。 典型情况下,P表示数据的真实分布,Q表示数据的理论分布,模型分布,或P的近似分布。

根据shannon的信息论,给定一个字符集的概率分布,我们可以设计一种编码,使得表示该字符集组成的字符串平均需要的比特数最少。假设这个字符集是X,对x∈X,其出现概率为P(x),那么其最优编码平均需要的比特数等于这个字符集的熵:

  H(X)=∑x∈XP(x)log[1/P(x)]

  在同样的字符集上,假设存在另一个概率分布Q(X)。如果用概率分布P(X)的最优编码(即字符x的编码长度等于log[1/P(x)]),来为符合分布Q(X)的字符编码,那么表示这些字符就会比理想情况多用一些比特数。KL-divergence就是用来衡量这种情况下平均每个字符多用的比特数,因此可以用来衡量两个分布的距离。即:

  DKL(Q||P)=∑x∈XQ(x)[log(1/P(x))] - ∑x∈XQ(x)[log[1/Q(x)]]=∑x∈XQ(x)log[Q(x)/P(x)]

  由于-log(u)是凸函数,因此有下面的不等式

  DKL(Q||P) = -∑x∈XQ(x)log[P(x)/Q(x)] = E[-logP(x)/Q(x)] ≥ -logE[P(x)/Q(x)] = -  log∑x∈XQ(x)P(x)/Q(x) = 0

  即KL-divergence始终是大于等于0的。当且仅当两分布相同时,KL-divergence等于0。

  ===========================

  举一个实际的例子吧:比如有四个类别,一个方法A得到四个类别的概率分别是0.1,0.2,0.3,0.4。另一种方法B(或者说是事实情况)是得到四个类别的概率分别是0.4,0.3,0.2,0.1,那么这两个分布的KL-Distance(A,B)=0.1*log(0.1/0.4)+0.2*log(0.2/0.3)+0.3*log(0.3/0.2)+0.4*log(0.4/0.1)

  这个里面有正的,有负的,可以证明KL-Distance()>=0.

  从上面可以看出, KL散度是不对称的。即KL-Distance(A,B)!=KL-Distance(B,A)

  KL散度是不对称的,当然,如果希望把它变对称,

  Ds(p1, p2) = [D(p1, p2) + D(p2, p1)] / 2.

二、第二种理解

  今天开始来讲相对熵,我们知道信息熵反应了一个系统的有序化程度,一个系统越是有序,那么它的信息熵就越低,反之就越高。下面是熵的定义

如果一个随机变量的可能取值为,对应的概率为,则随机变量的熵定义为

  有了信息熵的定义,接下来开始学习相对熵。

  1. 相对熵的认识

相对熵又称互熵,交叉熵,鉴别信息,Kullback熵,Kullback-Leible散度(即KL散度)等。设

取值的两个概率概率分布,则的相对熵为

在一定程度上,熵可以度量两个随机变量的距离。KL散度是两个概率分布P和Q差别的非对称性的度量。KL散度是

用来度量使用基于Q的编码来编码来自P的样本平均所需的额外的位元数。 典型情况下,P表示数据的真实分布,Q

表示数据的理论分布,模型分布,或P的近似分布。

2. 相对熵的性质

相对熵(KL散度)有两个主要的性质。如下

(1)尽管KL散度从直观上是个度量或距离函数,但它并不是一个真正的度量或者距离,因为它不具有对称性,即

(2)相对熵的值为非负值,即

在证明之前,需要认识一个重要的不等式,叫做吉布斯不等式。内容如下

3. 相对熵的应用

相对熵可以衡量两个随机分布之间的距离,当两个随机分布相同时,它们的相对熵为零,当两个随机分布的差别增

大时,它们的相对熵也会增大。所以相对熵(KL散度)可以用于比较文本的相似度,先统计出词的频率,然后计算

KL散度就行了。另外,在多指标系统评估中,指标权重分配是一个重点和难点,通过相对熵可以处理。

4.交叉熵与相对熵


参考:http://www.cnblogs.com/hxsyl/p/4910218.html

https://www.zhihu.com/question/41252833


ELBO(证据下界)

网上关于ELBO的内容较少,主要常出现在变分推断当中。

例如在用EM处理LDA主题模型时,

看看文档数据的对数似然函数 如下,为了简化表示,用 代替 ,用来表示 对于变分分布 的期望。

其中,从第(5)式到第(6)式用到了Jensen不等式:

一般把第(7)式记为:

由于 是我们的对数似然的一个下界(第6式),所以这个L一般称为ELBO(Evidence Lower BOund)。那么这个ELBO和我们需要优化的的KL散度有什么关系呢?注意到:

在(10)式中,由于对数似然部分和我们的KL散度无关,可以看做常量,因此我们希望最小化KL散度等价于最大化ELBO。那么我们的变分推断最终等价的转化为要求ELBO的最大值。现在我们开始关注于极大化ELBO并求出极值对应的变分参数λ,ϕ,γ。


参考文献:https://zhuanlan.zhihu.com/p/29932017

ELBO 与 KL散度的更多相关文章

  1. 【原】浅谈KL散度(相对熵)在用户画像中的应用

    最近做用户画像,用到了KL散度,发现效果还是不错的,现跟大家分享一下,为了文章的易读性,不具体讲公式的计算,主要讲应用,不过公式也不复杂,具体可以看链接. 首先先介绍一下KL散度是啥.KL散度全称Ku ...

  2. PRML读书会第十章 Approximate Inference(近似推断,变分推断,KL散度,平均场, Mean Field )

    主讲人 戴玮 (新浪微博: @戴玮_CASIA) Wilbur_中博(1954123) 20:02:04 我们在前面看到,概率推断的核心任务就是计算某分布下的某个函数的期望.或者计算边缘概率分布.条件 ...

  3. paper 23 :Kullback–Leibler divergence KL散度(2)

    Kullback–Leibler divergence KL散度 In probability theory and information theory, the Kullback–Leibler ...

  4. 浅谈KL散度

    一.第一种理解 相对熵(relative entropy)又称为KL散度(Kullback–Leibler divergence,简称KLD),信息散度(information divergence) ...

  5. 非负矩阵分解(1):准则函数及KL散度

    作者:桂. 时间:2017-04-06  12:29:26 链接:http://www.cnblogs.com/xingshansi/p/6672908.html 声明:欢迎被转载,不过记得注明出处哦 ...

  6. 【机器学习基础】熵、KL散度、交叉熵

    熵(entropy).KL 散度(Kullback-Leibler (KL) divergence)和交叉熵(cross-entropy)在机器学习的很多地方会用到.比如在决策树模型使用信息增益来选择 ...

  7. KL散度、JS散度、Wasserstein距离

    1. KL散度 KL散度又称为相对熵,信息散度,信息增益.KL散度是是两个概率分布 $P$ 和 $Q$  之间差别的非对称性的度量. KL散度是用来 度量使用基于 $Q$ 的编码来编码来自 $P$ 的 ...

  8. KL散度

    摘自: https://www.jianshu.com/p/43318a3dc715?from=timeline&isappinstalled=0 一.解决的问题 量化两种概率分布P和Q可以使 ...

  9. 深度学习中交叉熵和KL散度和最大似然估计之间的关系

    机器学习的面试题中经常会被问到交叉熵(cross entropy)和最大似然估计(MLE)或者KL散度有什么关系,查了一些资料发现优化这3个东西其实是等价的. 熵和交叉熵 提到交叉熵就需要了解下信息论 ...

随机推荐

  1. Atitit.收银系统模块架构attilax 总结

    Atitit.收银系统模块架构attilax 总结 1. 常规收银系统模块结构1 1.1. 商品管理1 1.2. 会员系统1 1.3. 报表系统1 1.4. 会员卡系统1 1.5. 库存管理1 2.  ...

  2. 在modelsim中加入quartus仿真库

    找到modelsim安装目录下的modelsim.ini文件. 将modelsim.ini的只读属性去掉. 打开quartus软件.选择Launch Simulation Library Compil ...

  3. Java获取网卡的mac地址

    为了项目的安全,有时候需要得到电脑的唯一码,比如:网卡的mac地址.和大家分享一下,下面是项目中用到的工具类: import java.io.BufferedReader;import java.io ...

  4. 学习抓包之如何用Charles实现“刷楼”

    为了获取一些网络中的数据,我们需要掌握抓包技术. Charles是一个 HTTP 代理服务器, HTTP 监视器,反转代理服务器.它允许一个开发者查看所有连接互联网的 HTTP 通信.这些包括Requ ...

  5. strust2 和 hibernate的整合------登录的实现

    初步认识了struts2,并与hibernate进行整合,完成了一个登录的案例,下面贴源码 1.实体类User public class User { private Integer id; priv ...

  6. Web Service安全问题,不暴露接口的一种办法

    我们在做服务层时,经常会用到Web Service,但是这有个问题,容易被人恶意调用接口. 一种解决办法是自己写个验证SoapHeader,屏蔽接口在网页端调用,但使用这个方法别人还是能看到你的接口有 ...

  7. springMVC集成mybatis-paginator实现分页

    mybatis-paginator下载地址:https://github.com/miemiedev/mybatis-paginator 1.引入maven依赖 <dependency> ...

  8. python 开发技巧(0)-- 各个系统的python安装

    window安装 Python的安装: 1.进入Python官方网站下载安装包 点击导航栏的 Downloads 会自动识别你的windows系统  你会看到  Python3.6.2 和 Pytho ...

  9. vCenter创建标准网络

          vmware虚拟化,有2种网络类型,一种是标准网络,另外一种是分布式网络.这里重点介绍标准网络,标准网络可通过vCenter创建vSwitch标准虚拟交换机(vSS).vSS的承载体是物理 ...

  10. 【Mac + Appium + Python3.6学习(二)】之Android自动化测试,appium-desktop配置和简易自动化测试脚本

    上一篇文章介绍安装appium测试环境,这一片研究介绍如何测试Android自动化. 上一篇地址:<[Mac + Appium学习(一)]之安装Appium环境> 这一篇参考:<Ma ...