【BZOJ2839】集合计数 容斥原理+组合数
Description
一个有N个元素的集合有2N个不同子集(包含空集),现在要在这2N个集合中取出若干集合(至少一个),使得
它们的交集的元素个数为K,求取法的方案数,答案模1000000007。(是质数喔~)
Input
一行两个整数N,K
Output
一行为答案。
Sample Input
3 2
Sample Output
6
HINT
【样例说明】
假设原集合为{A,B,C}
则满足条件的方案为:{AB,ABC},{AC,ABC},{BC,ABC},{AB},{AC},{BC}
【数据说明】
对于100%的数据,1≤N≤1000000;0≤K≤N;
Sol
恰好xx的问题,很大几率是容斥。。。
冷静分析一下,我们现在假设钦定了K个数字作为交集的最终结果,那么包含这些数字数字组成的集合就可以随便选,这样的方案数是\(C(n,k)*(2^{2^{n-i}}-1)\)(这里空集是不合法的)。但是这样算出来的是“至少有K个”,我们要用容斥来处理一下,而且这里的方案是有序的,所以容斥系数是还要乘以组合数。具体地,恰好选j个的每个方案里面,都包含了\(C(j,i)\)个有i个的,要算入系数。
至此本题的解法就完了,但是有一个问题:\(2^{2^{n-i}}\)是不能快速幂的,所以我们用递推法,开始的时候\(t=1\),每循环一次,\(t=t*(t+2)\)。
Code
#include <cstdio>
#define ll long long
ll n,k,A,fac[1000005],ifc[1000005],inv[1000005],P=1000000007;
ll c(int x,int y){return 1ll*fac[x]*ifc[y]%P*ifc[x-y]%P;}
int main()
{
scanf("%lld%lld",&n,&k);
inv[1]=fac[0]=ifc[0]=fac[1]=ifc[1]=1;
for(int i=2;i<=n;i++) inv[i]=(P-(P/i)*inv[P%i])%P,fac[i]=fac[i-1]*i%P,ifc[i]=ifc[i-1]*inv[i]%P;
for(ll i=n,op=((n-k)&1)?-1:1,t=1;i>=k;i--) A=(A+P+op*c(i,k)*c(n,i)%P*t%P)%P,op=-op,t=t*(t+2)%P;
printf("%lld\n",A);
}
【BZOJ2839】集合计数 容斥原理+组合数的更多相关文章
- [bzoj2839]集合计数 题解 (组合数+容斥)
Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模1000000007 ...
- bzoj2839 集合计数 组合计数 容斥原理|题解
集合计数 题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是 ...
- 【BZOJ-2839】集合计数 容斥原理 + 线性推逆元 + 排列组合
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 229 Solved: 120[Submit][Status][Discuss] ...
- BZOJ 2839: 集合计数 [容斥原理 组合]
2839: 集合计数 题意:n个元素的集合,选出若干子集使得交集大小为k,求方案数 先选出k个\(\binom{n}{k}\),剩下选出一些集合交集为空集 考虑容斥 \[ 交集为\emptyset = ...
- bzoj2839: 集合计数 容斥+组合
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 523 Solved: 287[Submit][Status][Discuss] ...
- bzoj2839 集合计数(容斥)
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 883 Solved: 490[Submit][Status][Discuss] ...
- bzoj2839 集合计数
F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser Logout 捐赠本站 2839: 集合计数 Time ...
- bzoj2839 集合计数(容斥+组合)
集合计数 内存限制:128 MiB 时间限制:1000 ms 标准输入输出 题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 ...
- 2019.02.09 bzoj2839: 集合计数(容斥原理)
传送门 题意简述:对于一个有N个元素的集合在其2^N个子集中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数. 思路:考虑枚举相交的是哪kkk个,有CnkC_n^kCnk种方案 ...
随机推荐
- 使用Easy-creds创建伪AP
项目地址:https://github.com/brav0hax/easy-creds 打开文件夹 安装easy-creds root@sch01ar:/sch01ar/easy-creds# ./i ...
- 用纯js实现一个文本编辑器
效果图 代码 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UT ...
- Linq入门博客系列地址http://www.cnblogs.com/lifepoem/category/330218.html
http://www.cnblogs.com/lifepoem/category/330218.html Linq及LambdaSql语句: http://kb.cnblogs.com/page/42 ...
- ARM六种寻址方式的汇编实现
AREA Example,CODE,READONLY ENTRY CODE32 ;S 后缀:更新标志位CPSR ;!后缀:基址寄存器中的地址发生变化 ;LDR 从存储器中加载数据到寄存器 ;STR 从 ...
- 4-2 线程安全性-原子性-atomic-2
AtomicReference和AtomicLong.AtomicInteger很像,方法也基本上是一样的,然后我们通过引用Integer来做一个简单的例子. com.mmall.concurrenc ...
- Centos7.2 下搭建LNMP环境(终极版)Yum安装
PHP7.1+Nginx+MySQL5.7 安装PHP //安装源只要遇到选择的全是Y rpm -Uvh https://dl.fedoraproject.org/pub/epel/epel-rele ...
- 客户端级别的渲染分析工具 dynaTrace
dynaTrace Ajax Edition是一款很好的javaScript性能分析工具.目前支持IE和Firefox 2款浏览器. dynaTrace如图所示: 点击Click here to st ...
- javascript实现新浪微博MID与地址转换
新浪微博每一条微博都会有一个mid,然后每条微博都有一个独立的地址,例如:http://www.weibo.com//Bw3SXzWzP 规律:地址中的黄色部分是用户id,绿色部分是微博的识别字符串, ...
- lucene 第二天
Lucene/Solr 第二天 1. 课程计划 Lucene的Field Lucene的索引库维护 lucene的查询 a) Query子对象 b) QueryParser Lucene相关度排序 ...
- 997D Cycles in product
传送门 题目大意 https://www.luogu.org/problemnew/show/CF997D 分析 我们发现两棵树互不相关 于是我们可以分别求出两棵树的信息 我们点分,人啊按后设f[i] ...