BZOJ - 4520 K远点对
题意:已知平面内 N 个点的坐标,求欧氏距离下的第 K 远点对
维护大小为2k最小堆,KD树的估值用前面提到的做法
PS.网上有人估价是使用边界四个点的最值来独立枚举,然而这样写似乎过不了
#include<bits/stdc++.h>
#define rep(i,j,k) for(register int i=j;i<=k;i++)
#define rrep(i,j,k) for(register int i=j;i>=k;i--)
#define erep(i,u) for(register int i=head[u];~i;i=nxt[i])
#define print(a) printf("%lld",(ll)(a))
#define println(a) printf("%lld\n",(ll)(a))
#define printbk(a) printf("%lld ",(ll)(a))
using namespace std;
const int MAXN = 2e5+11;
const int INF = 0x7fffffff;
typedef long long ll;
ll read(){
ll x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int D;
struct point{
int x[2];
bool operator < (const point &rhs) const{
return x[D]<rhs.x[D];
}
};
struct KD{
int son[MAXN][2];
point p[MAXN],mn[MAXN],mx[MAXN];
int root,ans,tot,n;
priority_queue<ll,vector<ll>,greater<ll> > pq;
void init(int t){
ans=INF; tot=D=0; n=t;
}
void pu(int o){
rep(i,0,1){
if(son[o][i]) rep(j,0,1){
if(mn[son[o][i]].x[j]<mn[o].x[j]) mn[o].x[j]=mn[son[o][i]].x[j];
if(mx[son[o][i]].x[j]>mx[o].x[j]) mx[o].x[j]=mx[son[o][i]].x[j];
}
}
}
int build(int now,int l,int r){
int mid=l+r>>1;
tot++; son[mid][0]=son[mid][1]=0;
D=now;nth_element(p+l,p+mid,p+r+1);//[l,r+1)
mn[mid].x[0]=mx[mid].x[0]=p[mid].x[0];
mn[mid].x[1]=mx[mid].x[1]=p[mid].x[1];
if(l<mid) son[mid][0]=build(now^1,l,mid-1);
if(r>mid) son[mid][1]=build(now^1,mid+1,r);
pu(mid);
return mid;
}
void insert(int &o,int now,point v){
if(!o){
o=++tot;
p[o].x[0]=mn[o].x[0]=mx[o].x[0]=v.x[0];
p[o].x[1]=mn[o].x[1]=mx[o].x[1]=v.x[1];
}else{
insert(son[o][p[o].x[now]<v.x[now]],now^1,v);
pu(o);
}
}
inline ll dis(point a,point b){
return (ll)(a.x[0]-b.x[0])*(a.x[0]-b.x[0])+1ll*(a.x[1]-b.x[1])*(a.x[1]-b.x[1]);
}
inline point mp(int x,int y){
point t;t.x[0]=x;t.x[1]=y;return t;
}
inline ll eva(int o,point &v){
if(!o) return -6666;
ll t1=max(abs(mn[o].x[0]-v.x[0]),abs(mx[o].x[0]-v.x[0]));
ll t2=max(abs(mn[o].x[1]-v.x[1]),abs(mx[o].x[1]-v.x[1]));
return t1*t1+t2*t2;
}
void query(int o,point &v){
if(!o)return;
while(pq.size()>2*n) pq.pop();
ll d1=dis(p[o],v),d2=-6666,d3=-6666;
if(pq.top()<d1){
pq.pop();
pq.push(d1);
}
if(son[o][0]) d2=eva(son[o][0],v);
if(son[o][1]) d3=eva(son[o][1],v);
if(d2>d3){
if(d2>pq.top()) query(son[o][0],v);
if(d3>pq.top()) query(son[o][1],v);
}else{
if(d3>pq.top()) query(son[o][1],v);
if(d2>pq.top()) query(son[o][0],v);
}
}
}kd;
int main(){
int n,k;
while(cin>>n>>k){
kd.init(k);
rep(i,1,n){
kd.p[i].x[0]=read();
kd.p[i].x[1]=read();
}
kd.root=kd.build(0,1,n);
while(!kd.pq.empty()) kd.pq.pop();
rep(i,1,2*k) kd.pq.push(-666);
rep(i,1,n){
kd.query(kd.root,kd.p[i]);
}
println(kd.pq.top());
}
return 0;
}
BZOJ - 4520 K远点对的更多相关文章
- BZOJ 4520: [Cqoi2016]K远点对
4520: [Cqoi2016]K远点对 Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 638 Solved: 340[Submit][Status ...
- BZOJ 4520 [Cqoi2016]K远点对(KD树)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4520 [题目大意] 求K远点对距离 [题解] 修改估价函数为欧式上界估价,对每个点进行 ...
- BZOJ 4520: [Cqoi2016]K远点对(k-d tree)
Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 1162 Solved: 618[Submit][Status][Discuss] Descripti ...
- BZOJ 4520: [Cqoi2016]K远点对 KDtree + 估价函数 + 堆
Code: #include<bits/stdc++.h> #define ll long long #define maxn 200000 #define inf 10000000000 ...
- 【52.55%】【BZOJ 4520】K远点对
Time Limit: 30 Sec Memory Limit: 512 MB Submit: 588 Solved: 309 [Submit][Status][Discuss] Descript ...
- [Cqoi2016]K远点对 K-Dtree
4520: [Cqoi2016]K远点对 链接 bzoj 思路 用K-Dtree求点的最远距离. 求的时候顺便维护一个大小为2k的小根堆. 不知道为啥一定会对. 代码 #include <bit ...
- 【BZOJ-4520】K远点对 KD-Tree + 堆
4520: [Cqoi2016]K远点对 Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 490 Solved: 237[Submit][Status ...
- 【bzoj4520】 Cqoi2016—K远点对
http://www.lydsy.com/JudgeOnline/problem.php?id=4520 (题目链接) 题意 求平面内第K远点对的距离. Solution 左转题解:jump 细节 刚 ...
- 【BZOJ4520】K远点对(KD-Tree)
[BZOJ4520]K远点对(KD-Tree) 题面 BZOJ 洛谷 题解 考虑暴力. 维护一个大小为\(K\)的小根堆,然后每次把两个点之间的距离插进去,然后弹出堆顶 这样子可以用\(KD-Tree ...
随机推荐
- SQL Server误区30日谈 第26天 SQL Server中存在真正的“事务嵌套”
误区 #26: SQL Server中存在真正的“事务嵌套”错误 嵌套事务可不会像其语法表现的那样看起来允许事务嵌套.我真不知道为什么有人会这样写代码,我唯一能够想到的就是某个哥们对SQL Serve ...
- OpenNebula 深入分析
-------------------OpenNebula 深入分析------------------- #容量清单 属性 描述 NAME 如果名字是空的,那么默认名字是:one-<VID&g ...
- 下载Redis
1.下载当前Redis 官网:https://redis.io/ 当前稳定版本是4.0.11,如下图,点Download it下面的链接进行下载 2.下载历史版本的Resis 网址: http://d ...
- SQLAlchemy 进阶
SQLAlchemy使用 1.执行原生SQL语句 from sqlalchemy.orm import sessionmaker from sqlalchemy import create_engin ...
- 7. Smali基础语法总结
最近在学习Android 移动安全逆向方面,逆向首先要看懂代码,Android4.4之前一直使用的是 Dalivk虚拟机,而Smali是用于Dalivk的反汇编程序的实现. Smali 支持注解,调试 ...
- 编写javascript的基本技巧一
自己从事前端编码也有两年有余啦,时间总是比想象中流逝的快.岁月啊,请给我把时间的 脚步停下吧.不过,这是不可能的,我在这里不是抒发时间流逝的感慨.而是想在这分享两 年来码农生活的一些javascrip ...
- HttpClient connectionTimeout
转自:http://www.cnblogs.com/carlosk/archive/2013/03/12/2956502.html 前几天服务器端的产品经理跑来问我是否有做请求超时和响应超时的处理.我 ...
- python DDT读取excel测试数据
转自:http://www.cnblogs.com/nuonuozhou/p/8645129.html ddt 结合单元测试一起用 ddt(data.driven.test):数据驱动测试 由外部 ...
- Stopwatch运行时间 Parallel并行任务
using System; using System.Collections.Generic; using System.Diagnostics; using System.Linq; using S ...
- C# 小球100米自由落下
//一球从N 米高自由落下,每次落地后反跳回原高度的一般:再录下,求它在第十次落地时,共经过多少米?第10次反弹多高 static string ballDsitance(float height1, ...