【分块】bzoj3295 [Cqoi2011]动态逆序对
考虑每次删除pos位置一个数x后,所造成的的影响就是,逆序对的个数少了在1~pos-1中大于x的数的个数加上pos+1~n中小于x的数的个数。
那么我们需要的操作就只有查询区间内比某数大(小)的个数。
↑,分块经典操作,每个块里维护一个有序表。
由于有删除,最好每个块用一个vector。
对于原数列怎么办呢?只需要弄一个vis数组,vis[i]表示i位置的数已经删除即可。(要找到v在原数列中的位置的话,在其所在块暴力即可。)
查询时对整块二分,对要删的元素所在块分成两段暴力。
O(n*sqrt(n)*log2(sqrt(n)))
【觉得我已经丧心病狂了,bzoj的树套树题只会用分块水怎么办啊,一旦不是总时限不就T了吗……QAQ】
P.S.请用long long。
#include<cstdio>
#include<vector>
#include<algorithm>
#include<cmath>
using namespace std;
bool vis[];
int n,m,a[],sum,num[],sz,l[],r[],v;
long long ans;
vector<int>b[];
vector<int>::iterator it;
int Res,Num;char C,CH[];
inline int G()
{
Res=;C='*';
while(C<''||C>'')C=getchar();
while(C>=''&&C<=''){Res=Res*+(C-'');C=getchar();}
return Res;
}
inline void P(long long x)
{
Num=;if(!x){putchar('');puts("");return;}
while(x>)CH[++Num]=x%,x/=;
while(Num)putchar(CH[Num--]+);
puts("");
}
void makeblock()
{
sz=sqrt((double)n*log2(n));
for(sum=;sum*sz<n;sum++)
{
l[sum]=(sum-)*sz+;
r[sum]=sum*sz;
for(int i=l[sum];i<=r[sum];i++) num[i]=sum,b[sum].push_back(a[i]);
sort(b[sum].begin(),b[sum].end());
}
l[sum]=sz*(sum-)+; r[sum]=n;
for(int i=l[sum];i<=r[sum];i++) {num[i]=sum; b[sum].push_back(a[i]);}
sort(b[sum].begin(),b[sum].end());
}
int D[];inline int lowbit(const int &x){return x&(-x);}
inline int getsum(int x){int res=;while(x>){res+=D[x];x-=lowbit(x);}return res;}
inline void add(int x,const int &d){while(x<=n){D[x]+=d;x+=lowbit(x);}}
void Get_First_Ans()
{for(int i=;i<=n;i++){add(a[i],);ans+=(long long)i-getsum(a[i]);}}
int Get_Pos(const int &v,const int &L,const int &R)
{for(int i=L;i<=R;i++) if(!vis[i] && a[i]==v) return i;}
void update()
{
for(int i=;i<=sum;i++)
{
it=lower_bound(b[i].begin(),b[i].end(),v);
if(*it==v)
{
int p=Get_Pos(v,l[i],r[i]); vis[p]=true;
for(int j=;j<i;j++) ans-=(long long)(b[j].end()-upper_bound(b[j].begin(),b[j].end(),v));
for(int j=l[i];j<p;j++) if(!vis[j] && a[j]>v) ans--;
for(int j=i+;j<=sum;j++) ans-=(long long)(lower_bound(b[j].begin(),b[j].end(),v)-b[j].begin());
for(int j=p+;j<=r[i];j++) if(!vis[j] && a[j]<v) ans--;
b[i].erase(it);
break;
}
}
}
int main()
{
n=G();m=G();
for(int i=;i<=n;i++) a[i]=G();
Get_First_Ans();
makeblock();
for(int i=;i<=m;i++)
{
v=G(); P(ans);
update();
}
return ;
}
【分块】bzoj3295 [Cqoi2011]动态逆序对的更多相关文章
- bzoj3295 [Cqoi2011]动态逆序对 cdq+树状数组
[bzoj3295][Cqoi2011]动态逆序对 2014年6月17日4,7954 Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数. ...
- bzoj3295[Cqoi2011]动态逆序对 树套树
3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 5987 Solved: 2080[Submit][Sta ...
- 2018.07.01 BZOJ3295: [Cqoi2011]动态逆序对(带修主席树)
3295: [Cqoi2011]动态逆序对 **Time Limit: 10 Sec Memory Limit: 128 MB Description 对于序列A,它的逆序对数定义为满足i<j& ...
- [BZOJ3295][Cqoi2011]动态逆序对 CDQ分治&树套树
3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec Memory Limit: 128 MB Description 对于序列A,它的逆序对数定义为满足i<j,且 ...
- bzoj千题计划146:bzoj3295: [Cqoi2011]动态逆序对
http://www.lydsy.com/JudgeOnline/problem.php?id=3295 正着删除看做倒着添加 对答案有贡献的数对满足以下3个条件: 出现时间:i<=j 权值大小 ...
- BZOJ3295: [Cqoi2011]动态逆序对(树状数组套主席树)
3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 7465 Solved: 2662[Submit][Sta ...
- BZOJ3295 [Cqoi2011]动态逆序对 —— CDQ分治
题目链接:https://vjudge.net/problem/HYSBZ-3295 3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec Memory Limit: 1 ...
- bzoj3295: [Cqoi2011]动态逆序对(cdq分治+树状数组)
3295: [Cqoi2011]动态逆序对 题目:传送门 题解: 刚学完cdq分治,想起来之前有一道是树套树的题目可以用cdq分治来做...尝试一波 还是太弱了...想到了要做两次cdq...然后伏地 ...
- [bzoj3295][Cqoi2011]动态逆序对_主席树
动态逆序对 bzoj-3295 Cqoi-2011 题目大意:题目链接. 注释:略. 想法:直接建立主席树. 由于是一个一个删除,所以我们先拿建立好的root[n]的权值线段树先把总逆序对求出来,接着 ...
随机推荐
- idea中mybatis-plugin破解
Mybatis Plugin 一.Mybatis Plugin插件是什么 提供Mapper接口与配置文件中对应SQL的导航 编辑XML文件时自动补全 根据Mapper接口, 使用快捷键生成xml文件及 ...
- [51nod] 1305 Pairwise Sum and Divide 数学
有这样一段程序,fun会对整数数组A进行求值,其中Floor表示向下取整: fun(A) sum = 0 for i = 1 to A.length for j = ...
- MAC电脑密码破解
[第一个方法] 开机,启动时按cmd+S,进入Single User Mode,出现像DOS一样的提示符#root> 在#root>下输入(注意空格,大小写) fsck -y moun ...
- html初探
HTML HTML是英文Hyper Text Mark-up Language(超文本标记语言)的缩写,他是一种制作万维网页面标准语言(标记).相当于定义统一的一套规则,大家都来遵守他,这样就可以让浏 ...
- 膨胀、腐蚀、开、闭(matlab实现)
膨胀.腐蚀.开.闭运算是数学形态学最基本的变换. 本文主要针对二值图像的形态学 膨胀:把二值图像各1像素连接成分的边界扩大一层(填充边缘或0像素内部的孔): B=[0 1 0 1 1 1 ...
- css划斜线
http://stackoverflow.com/questions/18012420/draw-diagonal-lines-in-div-background-with-css
- git分支开发,分支(feature)同步主干(master)代码,以及最终分支合并到主干的操作流程
由于rebase执行速度慢,分支同步主干代码时,分支的每次提交都可能和主干产生冲突,需要解决的次数太多,影响提交效率. 同时,为了保证主干提交线干净(可以安全回溯),所以采用下面所说的merge法. ...
- [bzoj2594][Wc2006]水管局长数据加强版——lct+离线
Brief Description 您有一个无向带权图,您需要支持两种操作. 询问两个点之间的最大权最小路径. 删除一条边. Algorithm Design 我们首先提出一个猜想:最优路径一定在原图 ...
- requests-html的js执行功能简单使用
#!/usr/bin/env python # encoding: utf-8 import asyncio from requests_html import HTMLSession import ...
- 8.read读取控制台输入
read(选项)(参数)选项:-p:指定读取值时的提示符-t:指定读取时等待的时间(秒),如果没有在指定的时间内输入,就不再等待了参数:变量:指定读取时的变量名