设方程x1+x2+x3+...+xn = m(m是常数)

这个方程的非负整数解的个数有(m+n-1)!/((n-1)!m!),也就是C(n+m-1,m)。

具体解释就是m个1和n-1个0做重集的全排列问题。

n元线性方程非负整数解的个数问题的更多相关文章

  1. 扩展欧几里得 求ax+by == n的非负整数解个数

    求解形如ax+by == n (a,b已知)的方程的非负整数解个数时,需要用到扩展欧几里得定理,先求出最小的x的值,然后通过处理剩下的区间长度即可得到答案. 放出模板: ll gcd(ll a, ll ...

  2. 求一个n元一次方程的解,Gauss消元

    求一个n元一次方程的解,Gauss消元 const Matrix=require('./Matrix.js') /*Gauss 消元 传入一个矩阵,传出结果 */ function Gauss(mat ...

  3. 解的个数(codevs 1213)

    题目描述 Description 已知整数x,y满足如下面的条件: ax+by+c = 0 p<=x<=q r<=y<=s 求满足这些条件的x,y的个数. 输入描述 Input ...

  4. poj 1061 扩展欧几里得解同余方程(求最小非负整数解)

    题目可以转化成求关于t的同余方程的最小非负数解: x+m*t≡y+n*t (mod L) 该方程又可以转化成: k*L+(n-m)*t=x-y 利用扩展欧几里得可以解决这个问题: eg:对于方程ax+ ...

  5. aX+bY+cZ=n(非负整数解存在性)

    题意: a*1234567+b*123456+c*1234=n 非负整数解得存在性. 题解: 看代码. #include<iostream> #include<cstdio> ...

  6. 扩展gcd codevs 1213 解的个数

    codevs 1213 解的个数  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题目描述 Description 已知整数x,y满足如下面的条件: ax+by ...

  7. codevs 1213 解的个数

    1213 解的个数 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold       题目描述 Description 已知整数x,y满足如下面的条件: ax+by+c = ...

  8. codevs1213 解的个数

    题目描述 Description 已知整数x,y满足如下面的条件: ax+by+c = 0 p<=x<=q r<=y<=s 求满足这些条件的x,y的个数. 输入描述 Input ...

  9. Codevs 1213 解的个数(exgcd)

    1213 解的个数 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 已知整数x,y满足如下面的条件: ax+by+c=0 p< ...

随机推荐

  1. 常用数字信号的产生(C实现)-ARMA模型数据生成

    ARMA模型属于信号现代谱估计的范畴,AR模型常用于信号的线性预测.AR模型最后归结为线性方程,MA最后为非线性方程,因此,AR模型使用较多. AR模型最后归结为解Yule-Walker方程,对应矩阵 ...

  2. 工作中使用的linux命令汇总

    ln -s  /usr/local/tomcat/ ./tomcat   创建软连接到/usr/local/tomcat tar -zxvf apache-kylin-2.4.0-bin-hbase1 ...

  3. centos 安装java1.8

    https://www.cnblogs.com/xuliangxing/p/7066913.html

  4. Python3爬虫(二)网络爬虫的尺寸与约束

    Infi-chu: http://www.cnblogs.com/Infi-chu/ 一.网络爬虫的尺寸: 1.小规模,数据量小,爬取速度不敏感,Requests库,爬取网页 2.中规模,数据规模较大 ...

  5. react-router 4.0中跳转失灵

    在https://github.com/ReactTraining/history文档中,跳转是 用这种方法,但是,用了之后就存在这么一个问题,网址换了但是页面并没有刷新. 查了资料后,history ...

  6. Python入门及容易!网摘分享给大家!

    Python:Python学习总结 背景 PHP的$和->让人输入的手疼(PHP确实非常简洁和强大,适合WEB编程),Ruby的#.@.@@也好不到哪里(OO人员最该学习的一门语言). Pyth ...

  7. Spring事务:一种编程式事务,三种声明式事务

    事务隔离级别 隔离级别是指若干个并发的事务之间的隔离程度.TransactionDefinition 接口中定义了五个表示隔离级别的常量: TransactionDefinition.ISOLATIO ...

  8. 0301001_Lesson1&2

    Lesson 1 Excuse me! 对不起! Listen to the tape then answer this question.Whose handbag is it?听录音,然后回答问题 ...

  9. 让Dreamweaver支持cshtml (MVC Razor环境)

    介绍:让Dreamweaver支持cshtml 正文: 如题,刚才搜了很久,都搜不到答案,幸好得到“包大人”(同事)的帮助,才得以解决. DW支持很多文件类型的代码提示,可是类型太多,不可能全部都有, ...

  10. C#操作Excel文件(转)

    摘要:本文介绍了Excel对象.C#中的受管代码和非受管代码,并介绍了COM组件在.net环境中的使用. 关键词:受管代码:非受管代码:Excel对象:动态连接库 引言 Excel是微软公司办公自动化 ...