题意

题目链接

Sol

不会做啊AAA。。

暴力上肯定是不行的,考虑根号分组

设\(m = \sqrt{n}\)

对于前\(m\)个直接暴力,利用单调队列优化多重背包的思想,按\(\% i\)分组一下。复杂度\(O(n\sqrt{n})\)

对于后\(m\)个,此时每个物品没有个数的限制,换一种dp方法

设\(g[i][j]\)表示用了\(i\)物品,大小为\(j\)的方案数。

转移的时候有两种方案

  1. 把当前所有物品大小\(+1\),\(g[i][j + i] += g[i][j]\)

  2. 新加入一个最小的物品, \(g[i + 1][j + m + 1] += g[i][j]\)

看上去很显然,但自己想不出来qwq

#include<cstdio>
#include<cmath>
#include<cstring>
#define pt(x) printf("%d\n", x);
using namespace std;
const int MAXN = 1e5 + 10, mod = 23333333;
int N, M, f[81][MAXN], g[81][MAXN];
int add(int x, int y) {
return (x + y >= mod) ? (x + y - mod): x + y;
}
int main() {
scanf("%d", &N);
M = sqrt(N); /*f[0][0] = 1; int o = 1;
for(int i = 1; i <= M; i++) {
for(int k = 0; k < i; k++) {//res
int s = 0;
for(int t = 0; i * t + k <= N; t++) {//num
s = add(s, f[i - 1][k + t * i]);
f[i][k + t * i] = s;
if(t >= i) s = (s - f[i - 1][(t - i) * i + k] + mod) % mod;//over take
}
}
}
int ans = f[M][N]; pt(ans) g[0][0] = 1; int p = 0; for(int i = 1; i <= M; i++) {// used i goods
for(int j = 0; j <= N; j++) {// length is j
if(j >= M + 1) g[i][j] = g[i - 1][j - (M + 1)];
if(j >= i) g[i][j] = add(g[i][j], g[i][j - i]);
}
for(int j = 0; j <= N; j++) (ans += 1ll * f[M][j] * g[i][N - j] % mod) %= mod;
}
printf("%d", ans);*/ f[0][0] = 1; int o = 1;
for(int i = 1; i <= M; i++, o ^= 1) {
memset(f[o], 0, sizeof(f[o]));
for(int k = 0; k < i; k++) {//res
int s = 0;
for(int t = 0; i * t + k <= N; t++) {//num
s = add(s, f[o ^ 1][k + t * i]);
f[o][k + t * i] = s;
if(t >= i) s = (s - f[o ^ 1][(t - i) * i + k] + mod) % mod;//over take
}
}
}
int ans = f[o ^ 1][N], tmp = o ^ 1; pt(ans)
g[0][0] = 1; o = 1;
for(int i = 1; i <= M; i++, o ^= 1) {// used i goods
memset(g[o], 0, sizeof(g[o]));
for(int j = 0; j <= N; j++) {// length is j
if(j >= M + 1) g[o][j] = g[o ^ 1][j - (M + 1)];
if(j >= i) g[o][j] = add(g[o][j], g[o][j - i]);
}
for(int j = 0; j <= N; j++) (ans += 1ll * f[tmp][j] * g[o][N - j] % mod) %= mod;
}
printf("%d", ans);
return 0;
}

51nod 1597 有限背包计数问题 (背包 分块)的更多相关文章

  1. 题解 51nod 1597 有限背包计数问题

    题目传送门 题目大意 给出 \(n\),第 \(i\) 个数有 \(i\) 个,问凑出 \(n\) 的方案数. \(n\le 10^5\) 思路 呜呜呜,傻掉了... 首先想到根号分治,分别考虑 \( ...

  2. LOJ6089 小Y的背包计数问题 背包、根号分治

    题目传送门 题意:给出$N$表示背包容量,且会给出$N$种物品,第$i$个物品大小为$i$,数量也为$i$,求装满这个背包的方案数,对$23333333$取模.$N \leq 10^5$ $23333 ...

  3. LOJ6089 小Y的背包计数问题 背包

    正解:背包 解题报告: 先放传送门! 好烦昂感觉真的欠下一堆,,,高级数据结构知识点什么的都不会,基础又麻油打扎实NOIp前的题单什么的都还麻油刷完,,,就很难过,,,哭辣QAQ 不说辣看这题QwQ! ...

  4. LOJ #6089. 小 Y 的背包计数问题

    LOJ #6089. 小 Y 的背包计数问题 神仙题啊orz. 首先把数分成\(<=\sqrt n\)的和\(>\sqrt n\)的两部分. \(>\sqrt n\)的部分因为最多选 ...

  5. 【LOJ6089】小Y的背包计数问题(动态规划)

    [LOJ6089]小Y的背包计数问题(动态规划) 题面 LOJ 题解 神仙题啊. 我们分开考虑不同的物品,按照编号与\(\sqrt n\)的关系分类. 第一类:\(i\le \sqrt n\) 即需要 ...

  6. POJ 3260 多重背包+完全背包

    前几天刚回到家却发现家里没网线 && 路由器都被带走了,无奈之下只好铤而走险尝试蹭隔壁家的WiFi,不试不知道,一试吓一跳,用个手机软件简简单单就连上了,然后在浏览器输入192.168 ...

  7. 【poj3260-最少找零】多重背包+完全背包

    多重背包+完全背包. 买家:多重背包:售货员:完全背包: 开两个数组,分别计算出买家,售货员每个面额的最少张数. 最重要的是上界的处理:上界为maxw*maxw+m(maxw最大面额的纸币). (网上 ...

  8. HDU 3591 The trouble of Xiaoqian(多重背包+全然背包)

    HDU 3591 The trouble of Xiaoqian(多重背包+全然背包) pid=3591">http://acm.hdu.edu.cn/showproblem.php? ...

  9. 背包!背包!HDU 2602 Bone Collector + HDU 1114 Piggy-Bank + HDU 2191 512

    http://acm.hdu.edu.cn/showproblem.php?pid=2602 第一题 01背包问题 http://acm.hdu.edu.cn/showproblem.php?pid= ...

随机推荐

  1. 2019.3.7考试T2 离线数论??

    $ \color{#0066ff}{ 题目描述 }$ 一天,olinr 在 luogu.org 刷题,一点提交,等了一分钟之后,又蛙又替. olinr 发动了他的绝招,说:"为啥啊???&q ...

  2. win10进入安全模式的方法

    https://jingyan.baidu.com/article/a3aad71ac5919bb1fa009667.html

  3. apache的URL重写

    apache的url重写 第一步:修改apache\conf目录下的的httpd.conf文件 1.加载apache的url重写模块 大概122行:LoadModule rewrite_module ...

  4. svn学习笔记(一)

    一.svn介绍 1.1 项目管理中的版本控制问题 通常软件开发由多人协作开发,如果对代码文件.配置文件.文档等没有进行版本控制,将会出现很多问题: 备份多个版本,占用磁盘空间大 解决代码冲突困难 容易 ...

  5. 教你搭建SpringMVC框架( 附源码)

    一.项目目录结构 二.SpringMVC需要使用的jar包 commons-logging-1.2.jar junit-4.10.jar log4j-api-2.0.2.jar log4j-core- ...

  6. Kibana6.x.x源码分析--启动时无反应分析

    今天执行启动命令后,不报错,但是也没有反应,一时不知道是什么原因造成的,后来经过分析发现,无意间删除了根目录下的一个文件夹plugins,重新创建上这个文件夹后,再次运行就OK了.

  7. pip安装时的异常,找不到lib2to3\\Grammar.txt

    [From] http://jahu.iteye.com/blog/2353325 异常 : [Errno 2] No such file or directory: 'd:\\python\\pyt ...

  8. 文献综述八:基于JAVA的商品网站的研究

    一.基本信息 标题:基于JAVA的商品网站的研究 时间:2015 出版源:信息技术 文件分类:对java语言的研究 二.研究背景 本文主要介绍了系统的分析,设计和开发的全部过程. 三.具体内容 文献的 ...

  9. 带标准IO带缓存区和非标准IO 遇到fork是的情况分析

    废话不多说 直接代码 #include<stdio.h> #include<sys/types.h> #include<unistd.h> #include< ...

  10. 2019.03.28 读书笔记 关于try catch

    try catch 在不异常的时候不损耗性能,耗损性能的是throw ex,所以在非异常是,不要滥用throw,特别是很多代码习惯:if(age<0) throw new Exception(& ...