bzoj1833

codevs1359

这道题也是道数位dp 因为0有前导0这一说卡了很久 最后发现用所有位数减1~9的位数就okay.....orzczl大爷 其他就跟51nod那道统计1出现次数一样啦

#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
using namespace std;
LL read(){
LL ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
LL f[][][],w[],cur=,ans1[],ans2[];
void prepare(){
w[]=; for(int i=;i<=;i++) w[i]=w[i-]*;
for(int i=;i<=;i++) f[][i][i]=;
for(int i=;i<=;i++)
for(int j=;j<=;j++)
for(int k=;k<=;k++){
for(int z=;z<=;z++)
f[i][j][k]+=f[i-][z][k];
if(j==k) f[i][j][k]+=w[i];
}
}
void work1(LL n){
int cur=;
if(!n){ans1[]=; return ;}
while(w[cur]>n) cur--;
LL tot=;
for(int i=;i<cur;i++) tot+=(w[i+]-w[i])*i;
tot+=(n-w[cur]+)*cur;
LL v=n/w[cur];
for(int i=;i<=;i++)
for(int j=;j<v;j++)
ans1[i]+=f[cur][j][i];
ans1[v]=ans1[v]+n%w[cur]+;
n=n%w[cur];
for(int i=cur-;i;i--){
v=n/w[i];
for(int j=;j<=;j++)
for(int k=;k<v;k++) ans1[j]+=f[i][k][j];
ans1[v]=ans1[v]+n%w[i]+;
n=n%w[i];
}
//printf("%lld %lld\n",tot,ans1[0]);
for(int i=;i<=;i++) tot-=ans1[i]; ans1[]=tot;
}
void work2(LL n){
int cur=;
if(!n){ans2[]=; return ;}
while(w[cur]>n) cur--;
LL tot=;
for(int i=;i<cur;i++) tot+=(w[i+]-w[i])*i;
tot+=(n-w[cur]+)*cur;
LL v=n/w[cur];
for(int i=;i<=;i++)
for(int j=;j<v;j++)
ans2[i]+=f[cur][j][i];
ans2[v]=ans2[v]+n%w[cur]+;
n=n%w[cur];
for(int i=cur-;i;i--){
v=n/w[i];
for(int j=;j<=;j++)
for(int k=;k<v;k++) ans2[j]+=f[i][k][j];
if(v) ans2[v]=ans2[v]+n%w[i]+;
n=n%w[i];
}
//printf("%lld %lld\n",tot,ans2[0]);
for(int i=;i<=;i++) tot-=ans2[i]; ans2[]=tot;
}
int main()
{
prepare();
work1(read()-); work2(read());
for(int i=;i<=;i++){
printf("%lld",ans2[i]-ans1[i]);
if(i!=) printf(" ");
}
return ;
}

bzoj1833: [ZJOI2010]count 数字计数 && codevs1359 数字计数的更多相关文章

  1. [BZOJ1833][ZJOI2010]count 数字计数

    [BZOJ1833][ZJOI2010]count 数字计数 试题描述 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 输入 输入文件中仅包含一行两个整数a ...

  2. BZOJ1833 ZJOI2010 count 数字计数 【数位DP】

    BZOJ1833 ZJOI2010 count 数字计数 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包 ...

  3. bzoj1833: [ZJOI2010]count 数字计数(数位DP+记忆化搜索)

    1833: [ZJOI2010]count 数字计数 题目:传送门 题解: 今天是躲不开各种恶心DP了??? %爆靖大佬啊!!! 据说是数位DP裸题...emmm学吧学吧 感觉记忆化搜索特别强: 定义 ...

  4. [BZOJ1833][ZJOI2010]Count数字计数(DP)

    数位DP学傻了,怎么写最后都写不下去了. 这题严格上来说应该不属于数位DP?只是普通DP加上一些统计上的判断吧. 首先复杂度只与数的位数$\omega$有关,所以怎么挥霍都不会超. f[i][j][k ...

  5. [bzoj1833][ZJOI2010]count 数字计数——数位dp

    题目: (传送门)[http://www.lydsy.com/JudgeOnline/problem.php?id=1833] 题解: 第一次接触数位dp,真的是恶心. 首先翻阅了很多很多一维dp,因 ...

  6. BZOJ1833 [ZJOI2010]count 数字计数 【数学 Or 数位dp】

    题目 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 输入格式 输入文件中仅包含一行两个整数a.b,含义如上所述. 输出格式 输出文件中包含一行10个整数, ...

  7. bzoj1833: [ZJOI2010]count 数字计数&&USACO37 Cow Queueing 数数的梦(数位DP)

    难受啊,怎么又遇到我不会的题了(捂脸) 如题,这是一道数位DP,随便找了个博客居然就是我们大YZ的……果然nb,然后就是改改模版++注释就好的了,直接看注释吧,就是用1~B - 1~A-1而已,枚举全 ...

  8. bzoj1833: [ZJOI2010]count 数字计数 数位dp

    bzoj1833 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. O ...

  9. 【数位dp】bzoj1833: [ZJOI2010]count 数字计数

    数位dp姿势一直很差啊:顺便庆祝一下1A Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a ...

随机推荐

  1. javascript-es6学习笔记

    es6技术培训文档 第一阶段:1.let与const用法2.变量的解构赋值3.字符串的扩展4.正则的扩展5.数组的扩展6.函数的扩展7.对象的扩展8.Symbol9.Set和Map数据结构 第二阶段: ...

  2. mysql 5.7.19 zip版本 windows安装步骤

    请注意此文档用于msyql5.7系列及以后版本(包括最新 mysql 8.0.11)zip版本windows下的安装1.下载mysql省略2.解压mysql到D:\Program Files\mysq ...

  3. cocos2d-x 粒子系统

    粒子系统是模拟自然界中的一些粒子的物理运动的效果,如烟雾,下雪,下雨,火,爆炸等. 粒子发射模式 粒子系统的发射模式的时候有两种方式:重力模式和半径模式. 粒子系统属性  属性名  行为  模式  d ...

  4. cocos2d-x 中菜单类

    菜单相关类包含:菜单类和菜单项类,菜单类图,从类图可见Menu类继承于Layer. 菜单项类图,从图中可见所有的菜单项都是从BaseMenuItem继承而来的,BaseMenuItem是抽象类,具体使 ...

  5. CSP201403-1:相反数

    引言:CSP(http://www.cspro.org/lead/application/ccf/login.jsp)是由中国计算机学会(CCF)发起的“计算机职业资格认证”考试,针对计算机软件开发. ...

  6. 为什么mysqld启动报错

    在一台ubuntu测试机器上启动一个mysql实例,本来应该是一件很简单的事情, 启动的时候却报错了:   mysqld_safe --defaults-file=/etc/mysql/my3307. ...

  7. DCGAN: "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Network" Notes

    - Alec Radford, ICLR2016 原文:https://arxiv.org/abs/1511.06434 论文翻译:https://www.cnblogs.com/lyrichu/p/ ...

  8. git 创建分支并提交到服务器对应的新分支

    1.切换到源分支 git checkout test 2.在源分支的基础上创建新分支 git branch test1 3.提交到远程分支 git pull 会自动提示下面的命令 git pull - ...

  9. Java项目启动时候报Neither the JAVA_HOME nor the JRE_HOME environment variable is defined 解决办法

    今天在发布Java项目的时候又遇到    Neither the JAVA_HOME nor the JRE_HOME environment variable is defined  At leas ...

  10. Linux e1000e网卡驱动

    目录 识别网卡 命令行参数 附加配置 技术支持 一.识别网卡e1000e驱动支持Intel所有的GbE PCIe网卡,除了82575,82576,基于82580系列的网卡.提示:Intel(R) PR ...