Of course, like any technology MongoDB has its strengths and weaknesses. MongoDB is designed for OLTP workloads. It can do complex queries, but it’s not necessarily the best fit for reporting-style workloads. Or if you need complex transactions, it’s not going to be a good choice. However, MongoDB’s simplicity makes it a great place to start.

mongodb——非事务,支持复杂查询,但是不适合报表

This ease of scaling, coupled with exceptional write performance (“All you’re doing is appending to the end of a log file”) and predictable query performance, add up to a high-performance workhorse in Cassandra.

cassandra——分布式扩展好,写性能强,以及可以预料的查询

Cassandra does not support Range based row-scans which may be limiting in certain use-cases. Cassandra is well suited for supporting single-row queries, or selecting multiple rows based on a Column-Value index.Cassandra supports secondary indexes on column families where the column name is known. Aggregations in Cassandra are not supported by the Cassandra nodes - client must provide aggregations. When the aggregation requirement spans multiple rows, Random Partitioning makes aggregations very difficult for the client. Recommendation is to use Storm or Hadoop for aggregations.

摘自:http://www.infoworld.com/article/2848722/nosql/mongodb-cassandra-hbase-three-nosql-databases-to-watch.html

Comparison Of NoSQL Databases HBase, Cassandra & MongoDB:
HBase:
Key characteristics:
· Distributed and scalable big data store
· Strong consistency
· Built on top of Hadoop HDFS
· CP on CAP

Good for:
· Optimized for read
· Well suited for range based scan
· Strict consistency
· Fast read and write with scalability

Not good for:
· Classic transactional applications or even relational analytics
· Applications need full table scan
· Data to be aggregated, rolled up, analyzed cross rows

Usage Case: Facebook message

Cassandra:
Key characteristics:
· High availability
· Incremental scalability
· Eventually consistent
· Trade-offs between consistency and latency
· Minimal administration
· No SPF (Single point of failure) – all nodes are the same in Cassandra
· AP on CAP

Good for:
· Simple setup, maintenance code
· Fast random read/write
· Flexible parsing/wide column requirement
· No multiple secondary index needed

Not good for:
· Secondary index
· Relational data
· Transactional operations (Rollback, Commit)
· Primary & Financial record
· Stringent and authorization needed on data
· Dynamic queries/searching on column data
· Low latency

Usage Case: Twitter, Travel portal

MongoDB:
Key characteristics:
· Schemas to change as applications evolve (Schema-free)
· Full index support for high performance
· Replication and failover for high availability
· Auto Sharding for easy Scalability
· Rich document based queries for easy readability
· Master-slave model
· CP on CAP

Good for:
· RDBMS replacement for web applications
· Semi-structured content management
· Real-time analytics and high-speed logging, caching and high scalability
· Web 2.0, Media, SAAS, Gaming

Not good for:
· Highly transactional system
· Applications with traditional database requirements such as foreign key constraints

Usage Case: Craigslist, Foursquare

摘自:https://www.linkedin.com/pulse/real-comparison-nosql-databases-hbase-cassandra-mongodb-sahu

针对分析任务:

For analytics, MongoDB provides a custom map/reduce implementation; Cassandra provides native Hadoop support, including for Hive (a SQL data warehouse built on Hadoop map/reduce) and Pig (a Hadoop-specific analysis language that many think is a better fit for map/reduce workloads than SQL).

http://stackoverflow.com/questions/2892729/mongodb-vs-cassandra

cassandra mongodb选择——cassandra:分布式扩展好,写性能强,以及可以预料的查询;mongodb:非事务,支持复杂查询,但是不适合报表的更多相关文章

  1. HBase、MongoDB、cassandra比较

    前言 传统数据库遇到的问题,数据量很大的时候无法存储:没有很好的备份机制:数据达到一定数量开始缓慢,很大的话基本无法支撑:因此我们需要探究更加合适的数据库来支撑我们的业务. HBase 什么是HBas ...

  2. Windows下MongoDB安装与PHP扩展

    MongoDB是什么就不再累述了,下面只写MongoDB安装与PHP扩展的方法. 一,安装准备 MongoDB 如果网速慢,可以到MongoDB中文社区的百度网盘下载,密码3gun.(根据你的操作系统 ...

  3. DataBase MongoDB高级知识-易扩展

    MongoDB高级知识-易扩展 应用程序数据集的大小正在以不可思议的速度增长.随着可用宽带的增长和存储器价格的下跌,即使是一个小规模的应用程序,需要存储的数据也可能大的惊人,甚至超出了很多数据库的处理 ...

  4. MongoDB高级知识-易扩展

    MongoDB高级知识-易扩展 应用程序数据集的大小正在以不可思议的速度增长.随着可用宽带的增长和存储器价格的下跌,即使是一个小规模的应用程序,需要存储的数据也可能大的惊人,甚至超出了很多数据库的处理 ...

  5. mongoDB学习记录---PHP扩展的find返回值

    最近的一个项目中用到了MongoDB,主要是使用MongoDB的PHP扩展.MongoDB的扩展中用于一个用于查询的方法是find().下面针对在理解MongoDB扩展的find()方法中做的实验做个 ...

  6. splunk LB和scale(根本在于分布式扩展index,search)

    Forwarder deployment topologies You can deploy forwarders in a wide variety of scenarios. This topic ...

  7. 如何使用MongoDB+Springboot实现分布式ID?

    转载请标明出处: http://blog.csdn.net/forezp/article/details/69056017 本文出自方志朋的博客 一.背景 如何实现分布式id,搜索相关的资料,一般会给 ...

  8. mongodb官网文档阅读笔记:与写性能相关的几个因素

    Indexes 和全部db一样,索引肯定都会引起写性能的下降,mongodb也没啥特别的,相对索引对读性能的提示,这些消耗通常是能够接受的,所以该加入的索引还是要加入.当然须要慎重一些.扯点远的,以前 ...

  9. Python3.7+Django2.0.4配合Mongodb打造高性能高扩展标签云存储方案

    原文转载自「刘悦的技术博客」https://v3u.cn/a_id_141 书接上回,之前有一篇文章提到了标签云系统的构建:Python3.7+jieba(结巴分词)配合Wordcloud2.js来构 ...

随机推荐

  1. json & pickle & shelve 模块

    JSON表示的对象就是标准的JavaScript语言的对象,JSON和Python内置的数据类型对应如下: # json序列化 import json,time user={'name':'egon' ...

  2. Facebook支持python的开源预测工具Prophet

    Facebook 宣布开源一款基于 Python 和 R 语言的数据预测工具――“Prophet”,即“先知”.取名倒是非常直白. Facebook 表示,Prophet 相比现有预测工具更加人性化, ...

  3. 3.2 使用STC89C52控制MC20发送短信

    需要准备的硬件 MC20开发板 1个 https://item.taobao.com/item.htm?id=562661881042 GSM/GPRS天线 1根 https://item.taoba ...

  4. python常用模块-1

    一.认识模块 1.什么是模块:一个模块就是一个包含了python定义和声明的文件,文件名就是加上.py的后缀,但其实import加载的模块分为四个通用类别 : 1.使用python编写的代码(.py文 ...

  5. 使用ajax进行汽车详情表的查询

    主界面代码 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w ...

  6. Centos 常用系统命令

    一.查看系统硬件信息: 1.CPU # 总核数 = 物理CPU个数 X 每颗物理CPU的核数 # 总逻辑CPU数 = 物理CPU个数 X 每颗物理CPU的核数 X 超线程数 # 查看物理CPU个数 c ...

  7. selection createTextRange setSelectionRange

    http://www.cnblogs.com/rainman/archive/2011/02/27/1966482.html http://www.zhangxinxu.com/wordpress/2 ...

  8. SqlHelper简单实现(通过Expression和反射)3.实体,数据传输对象(DTO)Helper类设计

    EntityHelper的主要功能有: 1.通过反射获取DTO的字段,主要提供给在需要从Entity获取数据后,填充给DTO并返回的作用: 通过反射获取PropertyInfo[]对象,然后取出Nam ...

  9. ERROR 2003 (HY000): Can't connect to MySQL server on "" (113)

    服务器为centos6. 这个原因是因为防火墙的问题 在mysql服务端执行 service iptables stop chkconfig iptables off #永久关闭防火墙 看情况执行 然 ...

  10. java 分页工具类

    //13年写的,今天(17)拷贝到博客园 package com.sicdt.sicsign.web.utils; import java.io.Serializable; import java.u ...