使用sklean进行多分类下的二分类
#coding:utf-8
import matplotlib.pyplot as plt
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF
from sklearn import datasets iris = datasets.load_iris() #花萼长度 花萼宽度
X = iris.data[:, 0:2] # we only take the first two features for visualization
#所属种类
y = iris.target print X.shape
print y
#两个因数
n_features = X.shape[1] C = 1.0
kernel = 1.0 * RBF([1.0, 1.0]) # for GPC # Create different classifiers. The logistic regression cannot do
# multiclass out of the box.
classifiers = {'L1 logistic': LogisticRegression(C=C, penalty='l1'),
'L2 logistic (OvR)': LogisticRegression(C=C, penalty='l2'),
'Linear SVC': SVC(kernel='linear', C=C, probability=True,random_state=0),
'L2 logistic (Multinomial)': LogisticRegression(C=C, solver='lbfgs', multi_class='multinomial'),
'GPC': GaussianProcessClassifier(kernel)
} n_classifiers = len(classifiers) plt.figure(figsize=(3 * 2, n_classifiers * 2))
plt.subplots_adjust(bottom=.2, top=.95) #3-9 的100个平均分布的值
xx = np.linspace(3, 9, 100)
#1-5 的100个平均分布的值
yy = np.linspace(1, 5, 100).T #
xx, yy = np.meshgrid(xx, yy) #纵列连接数据 构造虚拟:花萼长度 花萼宽度
Xfull = np.c_[xx.ravel(), yy.ravel()] for index, (name, classifier) in enumerate(classifiers.items()):
classifier.fit(X, y) y_pred = classifier.predict(X)
classif_rate = np.mean(y_pred.ravel() == y.ravel()) * 100
print("classif_rate for %s : %f " % (name, classif_rate)) # 查看预测概率
probas = classifier.predict_proba(Xfull)
#3个种类
n_classes = np.unique(y_pred).size
for k in range(n_classes):
plt.subplot(n_classifiers, n_classes, index * n_classes + k + 1)
plt.title("Class %d" % k)
if k == 0:
plt.ylabel(name)
#构造颜色
imshow_handle = plt.imshow(probas[:, k].reshape((100, 100)),extent=(3, 9, 1, 5), origin='lower')
plt.xticks(())
plt.yticks(())
idx = (y_pred == k)
if idx.any():
plt.scatter(X[idx, 0], X[idx, 1], marker='o', c='k') ax = plt.axes([0.15, 0.04, 0.7, 0.05])
plt.title("Probability")
plt.colorbar(imshow_handle, cax=ax, orientation='horizontal') plt.show()

使用sklean进行多分类下的二分类的更多相关文章
- ecshop 商品分类页 取得当前分类下的子分类方法
ecshop的商品分类页面category.php 下的分类,默认是取得所有同级父分类以及父类别的子分类.比如,我点击进入是A商品分类的页面 category.php?id=1,事实上 我只需要取得父 ...
- EcShop调用显示指定分类下的子分类方法
ECSHOP首页默认的只有全部分类,还有循环大类以及下面小类的代码,貌似没有可以调用显示指定大类下的子分类代码.于是就有这个文章的产生了,下面由夏日博客来总结下网站建设过程中ECSHOP此类问题的网络 ...
- keras框架下的深度学习(二)二分类和多分类问题
本文第一部分是对数据处理中one-hot编码的讲解,第二部分是对二分类模型的代码讲解,其模型的建立以及训练过程与上篇文章一样:在最后我们将训练好的模型保存下来,再用自己的数据放入保存下来的模型中进行分 ...
- Logistic回归二分类Winner or Losser----台大李宏毅机器学习作业二(HW2)
一.作业说明 给定训练集spam_train.csv,要求根据每个ID各种属性值来判断该ID对应角色是Winner还是Losser(0.1分类). 训练集介绍: (1)CSV文件,大小为4000行X5 ...
- 二分类问题 - 【老鱼学tensorflow2】
什么是二分类问题? 二分类问题就是最终的结果只有好或坏这样的一个输出. 比如,这是好的,那是坏的.这个就是二分类的问题. 我们以一个电影评论作为例子来进行.我们对某部电影评论的文字内容为好评和差评. ...
- 根据一个分类id 获取这个分类底下所有子分类的商品信息,根据下面方法查询出所有有关分类id 再 根据这些id去商品表里查询所有商品信息
/** * 检测该分类下所有子分类,并输出ID(包括自己) * 数据库字段 catid pid */ function getChildrenIds ($sort_id){ include_once ...
- Kaggle实战之二分类问题
0. 前言 1. MNIST 数据集 2. 二分类器 3. 效果评测 4. 多分类器与误差分析 5. Kaggle 实战 0. 前言 "尽管新技术新算法层出不穷,但是掌握好基础算法就能解决手 ...
- 准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure(对于二分类问题)
首先我们可以计算准确率(accuracy),其定义是: 对于给定的测试数据集,分类器正确分类的样本数与总样本数之比.也就是损失函数是0-1损失时测试数据集上的准确率. 下面在介绍时使用一下例子: 一个 ...
- NLP系列(3)_用朴素贝叶斯进行文本分类(下)
作者: 龙心尘 && 寒小阳 时间:2016年2月. 出处: http://blog.csdn.net/longxinchen_ml/article/details/50629110 ...
随机推荐
- 前端基础-JavaScript的基本概述和语法
1.JavaScript概述 2.JavaScript引入方式 3.JavaScript语言规范 4.JavaScript语言基础 5.JavaScript数据类型 6.JavaScript运算符 7 ...
- CentOS正确关机方法(转)
CentOS正确关机方法 1关机前准备 1.1观察系统使用状态 · 谁在线:who · 联网状态:netstat -a · 后台执行的程序:ps -au ...
- Exercise02_11
import javax.swing.JOptionPane; public class Population{ public static void main(String[] args){ int ...
- Exercise01_11
public class Population{ public static void main(String[] args){ int sum,s; s=365*5*24*60*60; sum=31 ...
- Word中插入带公式的Visio注意事项
有时候发现,有的公式显示的间距特别大,那么在word中右键打开Visio,改好后,保存了,word里还是那样. 因为你需要吧改好的另存为原来的visio文件(名字.位置要一样,就是说替换原来的文件), ...
- [Bug]CS0016: 未能写入输出文件“c:\Windows\Microsoft.NET\Framework\v4.0.30319\Temp
win7中安装asp.net的问题 编译器错误信息: CS0016: 未能写入输出文件问题解决办法 编译错误 说明: 在编译向该请求提供服务所需资源的过程中出现错误.请检查下列特定错误详细信息并适当地 ...
- Coherence装载数据的研究 - Invocation Service
这里验证第三个方法,原理是将需要装载的数据分载在所有的存储节点上,不同的地方是利用了存储节点提供的InvocationService进行装载,而不是PreloadRequest, 原理如图 前提条件是 ...
- linux内核分析笔记----上半部与下半部(下)
接着上节的来,我们在上节说了软中断和tasklet,那这最后就是工作队列了哦.. 工作队列和前面讨论的其他形式都不相同,它可以把工作推后,交由一个内核线程去执行----该工作总是会在进程上下文执行.这 ...
- 解决Linux关闭终端(关闭SSH等)后运行的程序或者服务自动停止【后台运行程序】
问题描述:当SSH远程连接到服务器上,然后运行一个服务 ./catalina.sh start,然后把终端开闭(切断SSH连接)之后,发现该服务中断,导致网页无法访问. 解决方法:使用nohup命 ...
- Netty源码细节-accept、read(Linux os层 + Netty层代码细节)(转)
原文:http://budairenqin.iteye.com/blog/2215899 这篇分析一下accept的细节, 我觉得网络IO相关开发很多时候不能仅仅局限于java层, 尤其从accept ...