hdu6070
hdu6070
题意
给出 \(n\) 个数, \(\frac{x}{y}\) 表示某个区间不同数的个数除以区间的长度,求 \(\frac{x}{y}\) 最小值。
分析
设 \(size(l, r)\) 表示 \([l, r]\) 这个区间内不同数的个数,那么求得就是 \(\frac{size(l, r)}{r - l + 1}\) 的最小值。
二分答案 \(mid\) ,式子转化成 \(size(l, r) + mid \times l \leq mid \times (r + 1)\) 。
枚举右端点 \(r\),线段树存的是从 \(l\) 到 当前枚举到的 \(r\) 的 \(size(l, r) + mid \times l\) ,如果存在最小值满足小于等于 \(mid \times (r + 1)\) ,说明这个 \(mid\) 可以取到,更新 \(mid\) 。
新姿势:线段树内每个点的信息是动态的,和枚举到的 \(r\) 有关,通过区间更新就可以很方便的计算 \(size(l, r)\) 的值。
\(last[a[i]]\) 表示 \(a[i]\) 这个数上一次出现的位置,那么每次我们只需要区间更新 \([last[a[i]] + 1, i]\) 就好了。
code
#include<bits/stdc++.h>
#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1
using namespace std;
const int MAXN = 6e4 + 10;
int a[MAXN];
int last[MAXN];
double s[MAXN << 2];
double lazy[MAXN << 2];
void pushDown(int rt) {
if(lazy[rt] > 0) {
s[rt << 1] += lazy[rt];
s[rt << 1 | 1] += lazy[rt];
lazy[rt << 1] += lazy[rt];
lazy[rt << 1 | 1] += lazy[rt];
lazy[rt] = 0;
}
}
void pushUp(int rt) {
s[rt] = min(s[rt << 1], s[rt << 1 | 1]);
}
void update(int L, int R, double c, int l, int r, int rt) {
if(L <= l && r <= R) {
lazy[rt] += c;
s[rt] += c;
return;
}
int m = (l + r) / 2;
pushDown(rt);
if(L <= m) update(L, R, c, lson);
if(R > m) update(L, R, c, rson);
pushUp(rt);
}
double query(int L, int R, int l, int r, int rt) {
if(L <= l && r <= R) {
return s[rt];
}
int m = (l + r) / 2;
pushDown(rt);
double res = 1e12;
if(L <= m) res = query(L, R, lson);
if(R > m) res = min(res, query(L, R, rson));
pushUp(rt);
return res;
}
int main() {
int T;
scanf("%d", &T);
while(T--) {
int n;
scanf("%d", &n);
for(int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
}
double l = 0, r = 1.0, mid;
while(r - l > 1e-5) {
mid = (l + r) / 2.0;
memset(s, 0, sizeof s);
memset(lazy, 0, sizeof lazy);
memset(last, 0, sizeof last);
int flg = 0;
for(int i = 1; i <= n; i++) {
update(last[a[i]] + 1, i, 1, 1, n, 1);
update(i, i, mid * i, 1, n, 1);
if(query(1, i, 1, n, 1) <= mid * (i + 1)) {
flg = 1;
break;
}
last[a[i]] = i;
}
if(flg) r = mid;
else l = mid;
}
printf("%.6f\n", mid);
}
return 0;
}
hdu6070的更多相关文章
- hdu6070 Dirt Ratio 二分+线段树
/** 题目:hdu6070 Dirt Ratio 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6070 题意:给定n个数,求1.0*x/y最小是多少.x ...
- 2017 Multi-University Training Contest - Team 4 hdu6070 Dirt Ratio
地址:http://acm.split.hdu.edu.cn/showproblem.php?pid=6070 题面: Dirt Ratio Time Limit: 18000/9000 MS (Ja ...
- 【二分】【线段树】hdu6070 Dirt Ratio
size(l,r)表示区间l,r权值的种类数,让你求min{size(l,r)/(r-l+1)}(1<=l<=r<=n). last[r]表示a[r]上一次出现的位置, 就是二分验证 ...
- hdu6070(分数规划/二分+线段树区间更新,区间最值)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=6070 题意: 给出一个题目提交序列, 从中选出一个正确率最小的子串. 选中的子串中每个题目当且仅当最 ...
- HDU-6070 Dirt Ratio(二分+线段树+分数规划)
目录 目录 思路: (有任何问题欢迎留言或私聊 && 欢迎交流讨论哦 目录 题意:传送门 原题目描述在最下面. 求\(sum/len\)最小值.\(sum\)是一段区间内不同数字的 ...
随机推荐
- 从统计学statistics的观点看概率分布
已知数据x,希望得到未知label y,即得到映射x-->y: 几个概念: 1)p(x): data distribution 数据分布 2)p(y): prior distribution 先 ...
- 活泼的CSS 3动态气泡按钮制作
这一次,我们正在创造一个有用的设置与对CSS3的多重背景和动画的力量动画按钮.通过此按钮包,您可以很容易地变成一个动画按钮,在您的网页上的任何链接只是指定一个类名.没有必要JavaScript.四色主 ...
- Spring中Resource接口的前缀书写格式
Resource template = ctx.getResource("classpath:some/resource/path/myTemplate.txt"); //这个 ...
- Oracle SQL 疑难解析读书笔记(二、汇总和聚合数据)
2.1 对某字段的值进行汇总 仅仅在两种特殊情况下,Oracle在聚合函数中考虑了NULL值.第一种是在GROUPING功能里,用来检验包含了NULL值的分析函数的结果,是直接由所在的表得来,还是由分 ...
- 常见通用的 JOIN 查询
SQL执行循序: 手写: SELECT DISTINCT <query_list> FROM <left_table> <join type> JOIN <r ...
- HTTP缓存原理
http的缓存分为强制缓存和对比缓存,两者的区别在于,强制缓存只要设置的时间不过期,就可以直接拿去用,而不用向服务器再一次发送请求.而对比缓存不管缓存是否有效,都需要向服务器发送请求. 其过程如下: ...
- 链接oracle数据库 生成表对应的javabean
package com.databi.utils; import java.io.File; import java.io.FileOutputStream; import java.io.IOExc ...
- C++ 智能指针的简单实现
智能指针的用处:在c++中,使用普通指针容易造成堆内存的泄露问题,即程序员会忘记释放,以及二次释放,程序发生异常时内存泄漏等问题,而使用智能指针可以更好的管理堆内存.注意,在这里智能指针是一个类而非真 ...
- mongodb的集合操作
MongoDB 创建集合 1.手动创建: 语法格式: db.createCollection(name, options) 参数说明: name: 要创建的集合名称 options: 可选参数, 指定 ...
- Linux make命令详解
在linux环境下的工作,免不了需要经常编译C/C++源代码,所以make命令是我们经常都会用到的.当然make工具不一定针对C代码,它也可以维护其他各种代码,详见:man make 在列举其详 ...