hdu6070

题意

给出 \(n\) 个数, \(\frac{x}{y}\) 表示某个区间不同数的个数除以区间的长度,求 \(\frac{x}{y}\) 最小值。

分析

设 \(size(l, r)\) 表示 \([l, r]\) 这个区间内不同数的个数,那么求得就是 \(\frac{size(l, r)}{r - l + 1}\) 的最小值。

二分答案 \(mid\) ,式子转化成 \(size(l, r) + mid \times l \leq mid \times (r + 1)\) 。

枚举右端点 \(r\),线段树存的是从 \(l\) 到 当前枚举到的 \(r\) 的 \(size(l, r) + mid \times l\) ,如果存在最小值满足小于等于 \(mid \times (r + 1)\) ,说明这个 \(mid\) 可以取到,更新 \(mid\) 。

新姿势:线段树内每个点的信息是动态的,和枚举到的 \(r\) 有关,通过区间更新就可以很方便的计算 \(size(l, r)\) 的值。

\(last[a[i]]\) 表示 \(a[i]\) 这个数上一次出现的位置,那么每次我们只需要区间更新 \([last[a[i]] + 1, i]\) 就好了。

code

#include<bits/stdc++.h>
#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1
using namespace std;
const int MAXN = 6e4 + 10;
int a[MAXN];
int last[MAXN];
double s[MAXN << 2];
double lazy[MAXN << 2];
void pushDown(int rt) {
if(lazy[rt] > 0) {
s[rt << 1] += lazy[rt];
s[rt << 1 | 1] += lazy[rt];
lazy[rt << 1] += lazy[rt];
lazy[rt << 1 | 1] += lazy[rt];
lazy[rt] = 0;
}
}
void pushUp(int rt) {
s[rt] = min(s[rt << 1], s[rt << 1 | 1]);
}
void update(int L, int R, double c, int l, int r, int rt) {
if(L <= l && r <= R) {
lazy[rt] += c;
s[rt] += c;
return;
}
int m = (l + r) / 2;
pushDown(rt);
if(L <= m) update(L, R, c, lson);
if(R > m) update(L, R, c, rson);
pushUp(rt);
}
double query(int L, int R, int l, int r, int rt) {
if(L <= l && r <= R) {
return s[rt];
}
int m = (l + r) / 2;
pushDown(rt);
double res = 1e12;
if(L <= m) res = query(L, R, lson);
if(R > m) res = min(res, query(L, R, rson));
pushUp(rt);
return res;
}
int main() {
int T;
scanf("%d", &T);
while(T--) {
int n;
scanf("%d", &n);
for(int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
}
double l = 0, r = 1.0, mid;
while(r - l > 1e-5) {
mid = (l + r) / 2.0;
memset(s, 0, sizeof s);
memset(lazy, 0, sizeof lazy);
memset(last, 0, sizeof last);
int flg = 0;
for(int i = 1; i <= n; i++) {
update(last[a[i]] + 1, i, 1, 1, n, 1);
update(i, i, mid * i, 1, n, 1);
if(query(1, i, 1, n, 1) <= mid * (i + 1)) {
flg = 1;
break;
}
last[a[i]] = i;
}
if(flg) r = mid;
else l = mid;
}
printf("%.6f\n", mid);
}
return 0;
}

hdu6070的更多相关文章

  1. hdu6070 Dirt Ratio 二分+线段树

    /** 题目:hdu6070 Dirt Ratio 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6070 题意:给定n个数,求1.0*x/y最小是多少.x ...

  2. 2017 Multi-University Training Contest - Team 4 hdu6070 Dirt Ratio

    地址:http://acm.split.hdu.edu.cn/showproblem.php?pid=6070 题面: Dirt Ratio Time Limit: 18000/9000 MS (Ja ...

  3. 【二分】【线段树】hdu6070 Dirt Ratio

    size(l,r)表示区间l,r权值的种类数,让你求min{size(l,r)/(r-l+1)}(1<=l<=r<=n). last[r]表示a[r]上一次出现的位置, 就是二分验证 ...

  4. hdu6070(分数规划/二分+线段树区间更新,区间最值)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=6070 题意: 给出一个题目提交序列, 从中选出一个正确率最小的子串. 选中的子串中每个题目当且仅当最 ...

  5. HDU-6070 Dirt Ratio(二分+线段树+分数规划)

    目录 目录 思路: (有任何问题欢迎留言或私聊 && 欢迎交流讨论哦 目录 题意:传送门  原题目描述在最下面.  求\(sum/len\)最小值.\(sum\)是一段区间内不同数字的 ...

随机推荐

  1. P2161 [SHOI2009]会场预约

    题目描述 PP大厦有一间空的礼堂,可以为企业或者单位提供会议场地.这些会议中的大多数都需要连续几天的时间(个别的可能只需要一天),不过场地只有一个,所以不同的会议的时间申请不能够冲突.也就是说,前一个 ...

  2. BZOJ3573 [Hnoi2014]米特运输 【贪心】

    题目链接 BZOJ3573 题解 题目又臭又长系列 题意:修改尽量少的点权,使得: ①同个节点的所有儿子点权相同 ②任意非叶节点权值等于其儿子权值之和 容易发现一旦任意一个点权值确定,整棵树权值就确定 ...

  3. 【TMD模拟赛】黄金拼图 Cao

    正解:Cao 据说这样的题是用来骗丛林生物上树的...... 这样的题除了考观察力之外还.........我们发现他异或了opt,恩,就这样,用离线推答案..... #include <cstd ...

  4. Visaul Studio 常用快捷键动画演示

    从本篇文章开始,我将会陆续介绍提高 VS 开发效率的文章,欢迎大家补充~ 在进行代码开发的时候,我们往往会频繁的使用键盘.鼠标进行协作,但是切换使用两种工具会影响到我们的开发速度,如果所有的操作都可以 ...

  5. bootstrap、angularJS、nodeJs、reactJs视频教程

    bootstrap.angularJS.nodeJs.reactJs视频教程 发布时间:『 2017-06-25 19:50』  博客类别:资源下载  阅读(74) 评论(0) 智能社与达内哪个好?说 ...

  6. 用filters定制化spring的包扫描

    Fiter的信息如下: Filter的类型有:annotation(这是spring默认的),assignable,aspectj, regex,custom 首先看一下我这个demo的目录结构: 上 ...

  7. Install the Active Directory Administration Tools on Windows Server

    安装 Active Directory 管理工具 To manage your directory from an EC2 Windows instance, you need to install ...

  8. 《vue.js实战》练习---标签页组件

    html: <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF ...

  9. 链接oracle数据库 生成表对应的javabean

    package com.databi.utils; import java.io.File; import java.io.FileOutputStream; import java.io.IOExc ...

  10. jquery中lhgdialog插件(一)

    一:前言 最近在使用jquery的控件,其实以前也写但是突然之间遇到了需要从弹出窗口传值到父窗口,突然觉得这种传值的方式其实也是需要javascript的基础的,但是我自己还没有去真正的做过,所以还是 ...