一文弄懂-BIO,NIO,AIO
目录
1. BIO: 同步阻塞IO模型

特点:对于客户端的请求,服务端是同步返回结果的 如果服务端一直在处理中 那么这个线程就会阻塞着
缺点:1. 线程阻塞浪费很多资源
2. C10K问题:线程很多,服务器压力太大, 且没有服务器能承受10k的连接数
应用场景: 使用与连接数固定且较小的通信架构,程序简单易懂
代码示例:
import java.io.IOException;
import java.net.ServerSocket;
import java.net.Socket; public class SocketServer {
public static void main(String[] args) throws IOException {
ServerSocket serverSocket = new ServerSocket(9000);
while (true) {
System.out.println("等待连接。。");
//阻塞方法
Socket clientSocket = serverSocket.accept();
System.out.println("有客户端连接了。。");
handler(clientSocket); /*new Thread(new Runnable() {
@Override
public void run() {
try {
handler(clientSocket);
} catch (IOException e) {
e.printStackTrace();
}
}
}).start();*/
}
} private static void handler(Socket clientSocket) throws IOException {
byte[] bytes = new byte[1024];
System.out.println("准备read。。");
//接收客户端的数据,阻塞方法,没有数据可读时就阻塞
int read = clientSocket.getInputStream().read(bytes);
System.out.println("read完毕。。");
if (read != -1) {
System.out.println("接收到客户端的数据:" + new String(bytes, 0, read));
}
clientSocket.getOutputStream().write("HelloClient".getBytes());
clientSocket.getOutputStream().flush();
}
}
//客户端代码
public class SocketClient {
public static void main(String[] args) throws IOException {
Socket socket = new Socket("localhost", 9000);
//向服务端发送数据
socket.getOutputStream().write("HelloServer".getBytes());
socket.getOutputStream().flush();
System.out.println("向服务端发送数据结束");
byte[] bytes = new byte[1024];
//接收服务端回传的数据
socket.getInputStream().read(bytes);
System.out.println("接收到服务端的数据:" + new String(bytes));
socket.close();
}
}
2. NIO: 同步非阻塞IO模型(多路复用)
非阻塞的解释: 一个线程多路复用(通过linux的epoll基于事件响应机制来实现一个线程处理多个请求)
使用场景:适用于连接数多且连接比较短的架构,比如聊天服务器,弹幕系统,服务器间的通讯,编程比较复杂(后面会讲到netty解决这个问题)
NIO非阻塞代码示例:
import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.ServerSocketChannel;
import java.nio.channels.SocketChannel;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List; public class NioServer { // 保存客户端连接
static List<SocketChannel> channelList = new ArrayList<>(); public static void main(String[] args) throws IOException, InterruptedException { // 创建NIO ServerSocketChannel,与BIO的serverSocket类似
ServerSocketChannel serverSocket = ServerSocketChannel.open();
serverSocket.socket().bind(new InetSocketAddress(9000));
// 设置ServerSocketChannel为非阻塞
serverSocket.configureBlocking(false);
System.out.println("服务启动成功"); while (true) {
// 非阻塞模式accept方法不会阻塞,否则会阻塞
// NIO的非阻塞是由操作系统内部实现的,底层调用了linux内核的accept函数
SocketChannel socketChannel = serverSocket.accept();
if (socketChannel != null) { // 如果有客户端进行连接
System.out.println("连接成功");
// 设置SocketChannel为非阻塞
socketChannel.configureBlocking(false);
// 保存客户端连接在List中
channelList.add(socketChannel);
}
// 遍历连接进行数据读取
Iterator<SocketChannel> iterator = channelList.iterator();
while (iterator.hasNext()) {
SocketChannel sc = iterator.next();
ByteBuffer byteBuffer = ByteBuffer.allocate(128);
// 非阻塞模式read方法不会阻塞,否则会阻塞
int len = sc.read(byteBuffer);
// 如果有数据,把数据打印出来
if (len > 0) {
System.out.println("接收到消息:" + new String(byteBuffer.array()));
} else if (len == -1) { // 如果客户端断开,把socket从集合中去掉
iterator.remove();
System.out.println("客户端断开连接");
}
}
}
}
}
总结:上面的示例还没有用到selector多路复用器 只是一个非阻塞IO的操作,当有10000个连接的时候,下面的while循环会循环10000次,而这时假如只有1000个连接是有数据交互的,那么9000个连接实际上并没有断开,也需要循环。所有为了解决无用连接被循环造成大量资源浪费的问题,我们需要引入多路复用器。
NIO多路复用器代码示例:
import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.SelectionKey;
import java.nio.channels.Selector;
import java.nio.channels.ServerSocketChannel;
import java.nio.channels.SocketChannel;
import java.util.Iterator;
import java.util.Set; public class NioSelectorServer { public static void main(String[] args) throws IOException, InterruptedException { // 创建NIO ServerSocketChannel
ServerSocketChannel serverSocket = ServerSocketChannel.open();
serverSocket.socket().bind(new InetSocketAddress(9000));
// 设置ServerSocketChannel为非阻塞
serverSocket.configureBlocking(false);
// 打开Selector处理Channel,即创建epoll
Selector selector = Selector.open();
// 把ServerSocketChannel注册到selector上,并且selector对客户端accept连接操作感兴趣
serverSocket.register(selector, SelectionKey.OP_ACCEPT);
System.out.println("服务启动成功"); while (true) {
// 阻塞等待需要处理的事件发生
selector.select(); // 获取selector中注册的全部事件的 SelectionKey 实例
Set<SelectionKey> selectionKeys = selector.selectedKeys();
Iterator<SelectionKey> iterator = selectionKeys.iterator(); // 遍历SelectionKey对事件进行处理
while (iterator.hasNext()) {
SelectionKey key = iterator.next();
// 如果是OP_ACCEPT事件,则进行连接获取和事件注册
if (key.isAcceptable()) {
ServerSocketChannel server = (ServerSocketChannel) key.channel();
SocketChannel socketChannel = server.accept();
socketChannel.configureBlocking(false);
// 这里只注册了读事件,如果需要给客户端发送数据可以注册写事件
socketChannel.register(selector, SelectionKey.OP_READ);
System.out.println("客户端连接成功");
} else if (key.isReadable()) { // 如果是OP_READ事件,则进行读取和打印
SocketChannel socketChannel = (SocketChannel) key.channel();
ByteBuffer byteBuffer = ByteBuffer.allocate(128);
int len = socketChannel.read(byteBuffer);
// 如果有数据,把数据打印出来
if (len > 0) {
System.out.println("接收到消息:" + new String(byteBuffer.array()));
} else if (len == -1) { // 如果客户端断开连接,关闭Socket
System.out.println("客户端断开连接");
socketChannel.close();
}
}
//从事件集合里删除本次处理的key,防止下次select重复处理
iterator.remove();
}
}
}
}
NIO的三大核心组件:Channel-通道,Buffer-缓冲区,Selector-多路复用器
1)channel:类似于流,每一个channel对应一个buffer缓冲区, buffer底层就是一个数组
2)channel会注册到selector上,由selector根据channel读写事件的发生将其交由给某个空闲的线程处理
3)NIO的Buffer 和 channel 都是既可以读 又可以写的
图示:

图解:NIO底层在JDK1.4的时候用的Linux底层的select() 和 poll() 函数进行实现的 跟非阻塞的那个示例代码一样,每次都要遍历所有的channel
后面JDK1.4之后使用epoll()函数基于事件监听机制实现的,只会对有事件的channel进行遍历并处理事件,多路复用器selector会会将我们channel的事件放到rdlist中,然后从rdlist中取出事件进行处理
NIioSelectorServer 三个核心的方法:
Selector.open() //创建多路复用器 socketChannel.register(selector, SelectionKey.OP_READ) //将channel注册到多路复用器上 selector.select() //阻塞等待需要处理的事件发生
Selector.open() :创建多路复用器 Hotspot会根据不同的操作系统,调用调用不同系统底层创建epoll实例的函数,例如linux调用epoll_create()函数返回的是一个epfd文件描述符(linux内核为了高效管理已打开文件,为其创建的索引,就叫文件描述符,通过该索引可以找到对应的文件)
socketChannel.register(selector, SelectionKey.OP_READ):将channel及其对应的事件注册到selector
selector.select(): 将创建的epfd放入到内部的集合中,然后调用linux底层函数epoll_ctl()进行事件绑定(真正的事件注册),然后调用内核函数epoll_wait() 进行阻塞处理等待队列,如果rdlist队列中有事件,那么就直接返回,如果没有事件,就阻塞进程
总结: NIO整个调用流程就是调用操作系统内核函数来创建Socket,获取到Socket的文件描述符,然后创建一个Selector,对应操作系统中的Epoll文件描述符,将Socket文件描述符绑定到Epoll文件描述符上,进行事件的异步通知,这样就实现了使用一个线程,并且不需要太多的遍历,将事件处理交给了操作系统内核的中断事件(socket接收到数据后,往rdlist中添加socket文件符的操作就是中断程序做的)
3.Epoll函数详解
上面在讲解selector核心的三个方法的时候,其实就是对应着操作系统内核底层的epoll的三个函数:
int epoll_create(int size);
创建一个epoll示例,返回一个非负数的文件描述符,参数size可忽略,已经弃用
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
  
参数:epfd表示epoll示例的文件描述符
op表示:操作类型,主要有以下几种
EPOLL_CTL_ADD:注册新的fd到epfd中,并关联事件event;
EPOLL_CTL_MOD:修改已经注册的fd的监听事件;
EPOLL_CTL_DEL:从epfd中移除fd,并且忽略掉绑定的event,这时event可以为null;
参数event是一个结构体
struct epoll_event {
	    __uint32_t   events;      /* Epoll events */
	    epoll_data_t data;        /* User data variable */
	};
	typedef union epoll_data {
	    void        *ptr;
	    int          fd;
	    __uint32_t   u32;
	    __uint64_t   u64;
	} epoll_data_t;
events有很多可选值,这里只举例最常见的几个:
EPOLLIN :表示对应的文件描述符是可读的;
EPOLLOUT:表示对应的文件描述符是可写的;
EPOLLERR:表示对应的文件描述符发生了错误;
成功则返回0,失败返回-1
int epoll_wait(int epfd, struct epoll_event *events, int maxevents, int timeout);
等待文件描述符epfd上面的事件,events表示调用者所有可用事件的集合,maxevents表示最多等到多少个事件就返回,timeout表示超时时间

4.Redis线程模型
Redis就是典型的基于epoll的NIO线程模型(nginx也是),epoll实例收集所有事件(连接与读写事件),由一个服务端线程连续处理所有事件的命令
Redis底层关于epoll的源码实现在redis的src源码目录的ae_epoll.c文件里,感兴趣的可以看看
5. AIO: 异步非阻塞IO模型 (NIO 2.0)
应用场景:AIO方式适用于连接数目多且连接比较长得架构,jdk1.7后开始支持,但是由于编程难度大,linux底层对aio的支持不够完美,所以很少用AIO直接编程我们的系统 而是使用Netty这种优秀的中间件完成,Netty底层是对NIO的封装
AIO示例代码:
import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.AsynchronousServerSocketChannel;
import java.nio.channels.AsynchronousSocketChannel;
import java.nio.channels.CompletionHandler; public class AIOServer { public static void main(String[] args) throws Exception {
final AsynchronousServerSocketChannel serverChannel =
AsynchronousServerSocketChannel.open().bind(new InetSocketAddress(9000)); serverChannel.accept(null, new CompletionHandler<AsynchronousSocketChannel, Object>() {
@Override
public void completed(AsynchronousSocketChannel socketChannel, Object attachment) {
try {
System.out.println("2--"+Thread.currentThread().getName());
// 再此接收客户端连接,如果不写这行代码后面的客户端连接连不上服务端
serverChannel.accept(attachment, this);
System.out.println(socketChannel.getRemoteAddress());
ByteBuffer buffer = ByteBuffer.allocate(1024);
socketChannel.read(buffer, buffer, new CompletionHandler<Integer, ByteBuffer>() {
@Override
public void completed(Integer result, ByteBuffer buffer) {
System.out.println("3--"+Thread.currentThread().getName());
buffer.flip();
System.out.println(new String(buffer.array(), 0, result));
socketChannel.write(ByteBuffer.wrap("HelloClient".getBytes()));
} @Override
public void failed(Throwable exc, ByteBuffer buffer) {
exc.printStackTrace();
}
});
} catch (IOException e) {
e.printStackTrace();
}
} @Override
public void failed(Throwable exc, Object attachment) {
exc.printStackTrace();
}
}); System.out.println("1--"+Thread.currentThread().getName());
Thread.sleep(Integer.MAX_VALUE);
}
}
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.AsynchronousSocketChannel; public class AIOClient { public static void main(String... args) throws Exception {
AsynchronousSocketChannel socketChannel = AsynchronousSocketChannel.open();
socketChannel.connect(new InetSocketAddress("127.0.0.1", 9000)).get();
socketChannel.write(ByteBuffer.wrap("HelloServer".getBytes()));
ByteBuffer buffer = ByteBuffer.allocate(512);
Integer len = socketChannel.read(buffer).get();
if (len != -1) {
System.out.println("客户端收到信息:" + new String(buffer.array(), 0, len));
}
}
}
为什么Netty底层使用NIO而不使用AIO?
AIO底层也是Epoll,但是Epoll在异步上做的不是很好,而且经过了JDK封装,不容易深度优化,所以有了Netty,Netty是异步非阻塞IO框架,它底层对NIO做了很多异步的操作。
为了方便更好的理解 同步与异步 阻塞与非阻塞的概念 可以看下面段子:
老张爱喝茶,废话不说,煮开水。
出场人物:老张,水壶两把(普通水壶,简称水壶;会响的水壶,简称响水壶)。
1 老张把水壶放到火上,立等水开。(同步阻塞)
老张觉得自己有点傻
2 老张把水壶放到火上,去客厅看电视,时不时去厨房看看水开没有。(同步非阻塞)
老张还是觉得自己有点傻,于是变高端了,买了把会响笛的那种水壶。水开之后,能大声发出嘀~~~~的噪音。
3 老张把响水壶放到火上,立等水开。(异步阻塞)
老张觉得这样傻等意义不大
4 老张把响水壶放到火上,去客厅看电视,水壶响之前不再去看它了,响了再去拿壶。(异步非阻塞)
老张觉得自己聪明了。
所谓同步异步,只是对于水壶而言。
普通水壶,同步;响水壶,异步。
虽然都能干活,但响水壶可以在自己完工之后,提示老张水开了。这是普通水壶所不能及的。
同步只能让调用者去轮询自己(情况2中),造成老张效率的低下。
所谓阻塞非阻塞,仅仅对于老张而言。
立等的老张,阻塞;看电视的老张,非阻塞。
总结: 同步异步相当于接受消息方而言,接收方能在处理完事件后通知到请求方,那么就是异步,如果需要请求方不断轮询查看结果 那么就是同步
阻塞非阻塞相当于请求方而言,我只能等待一个请求结束后才能干其他事 这就是阻塞 如果我发送了一个请求后立马能做其他事 这就是非阻塞
一文弄懂-BIO,NIO,AIO的更多相关文章
- 一文弄懂-《Scalable IO In Java》
		
目录 一. <Scalable IO In Java> 是什么? 二. IO架构的演变历程 1. Classic Service Designs 经典服务模型 2. Event-drive ...
 - 对于BIO/NIO/AIO,你还只停留在烧开水的水平吗?
		
1.发发牢骚 相信大家在网上看过不少讲解 BIO/NIO/AIO 的文章,文章中举起栗子来更是夯吃夯吃一大堆,我是越看越觉得 What are you 你讲啥嘞? 本文将针对 BIO/NIO/AIO ...
 - [转]对于BIO/NIO/AIO,你还只停留在烧开水的水平吗
		
原文:https://www.javazhiyin.com/40106.html https://coding.imooc.com/class/381.html ------------------- ...
 - 一文弄懂-Netty核心功能及线程模型
		
目录 一. Netty是什么? 二. Netty 的使用场景 三. Netty通讯示例 1. Netty的maven依赖 2. 服务端代码 3. 客户端代码 四. Netty线程模型 五. Netty ...
 - (转)也谈BIO | NIO | AIO (Java版)
		
原文地址: https://my.oschina.net/bluesky0leon/blog/132361 关于BIO | NIO | AIO的讨论一直存在,有时候也很容易让人混淆,就我的理解,给出一 ...
 - 拿搬东西来解释udp tcpip  bio nio aio aio异步
		
[群主]雷欧纳德简单理解 tcpip是有通信确认的面对面通信 有打招呼的过程 有建立通道的过程 有保持通道的确认 有具体传输udp是看到对面的人好像在对面等你 就往对面扔东西[群主]雷欧 ...
 - 也谈BIO | NIO | AIO (Java版--转)
		
关于BIO | NIO | AIO的讨论一直存在,有时候也很容易让人混淆,就我的理解,给出一个解释: BIO | NIO | AIO,本身的描述都是在Java语言的基础上的.而描述IO,我们需要从两个 ...
 - IO回忆录之怎样过目不忘(BIO/NIO/AIO/Netty)
		
有热心的网友加我微信,时不时问我一些技术的或者学习技术的问题.有时候我回微信的时候都是半夜了.但是我很乐意解答他们的问题.因为这些年轻人都是很有上进心的,所以在我心里他们就是很优秀的,我愿意多和努力的 ...
 - Netty5序章之BIO NIO AIO演变
		
Netty5序章之BIO NIO AIO演变 Netty是一个提供异步事件驱动的网络应用框架,用以快速开发高性能.高可靠的网络服务器和客户端程序.Netty简化了网络程序的开发,是很多框架和公司都在使 ...
 
随机推荐
- JS 字符串比较"=="与"==="区别
			
最近课程油js的课程,课后习题有道关于下面 1 类似的一道题,叫比较然后判断结果,最开始看了网上的知识点,还是有点不太懂,个人感觉模模糊糊的(当然我自己菜,是正常的),就用依稀还记得的java对象与引 ...
 - Java基础--接口回调(接口  对象名 = new 类名)理解
			
接口 对象名1 = new 类名和类名 对象名2 = new 类名的区别是什么? 实例 /** *Person.java 接口 */ public interface Person { void in ...
 - PHP 清除缓存文件
			
/*清除缓存文件*/ public function clearRuntime() { $this->delFileByDir(RUNTIME_PATH); $this->success( ...
 - Session、Cookie与Token
			
http协议是无状态协议 协议是指计算机通信网络中两台计算机之间进行通信所必须共同遵守的规定或规则,超文本传输协议(HTTP)是一种通信协议,它允许将超文本标记语言(HTML)文档从Web服务器传送到 ...
 - Java 安全之Weblogic 2018-2628&2018-2893分析
			
Java 安全之Weblogic 2018-2628&2018-2893分析 0x00 前言 续上一个weblogic T3协议的反序列化漏洞接着分析该补丁的绕过方式,根据weblogic的补 ...
 - 【Linux】fstab中 每个字段代表的含义
			
默认情况下,fstab中已经有了当前的分区配置,内容可能类似: # <file system> <mount point> <type> <options ...
 - 【Linux】linux rinetd 端口转发部署
			
linux下简单好用的工具rinetd,实现端口映射/转发/重定向 Rinetd是为在一个Unix和Linux操作系统中为重定向传输控制协议(TCP)连接的一个工具.Rinetd是单一过程的服务器,它 ...
 - CVE-2020-0796复现
			
今天整理资料时发现了之前存的一个cve漏洞复现过程,当时打算跟着复现来着,后来也没去复现,今天刚好有时间,所以来复现一下这个漏洞 漏洞讲解 https://www.freebuf.com/vuls/2 ...
 - ctfhub技能树—信息泄露—备份文件下载—.DS_Store
			
打开靶机 查看页面信息 使用dirsearch进行扫描 访问该网页,下载文件 使用Linux系统打开文件 发现一个特殊文件,使用浏览器打开 拿到flag 二.使用Python-dsstore工具查看该 ...
 - [Usaco2007 Feb]Cow Party
			
题目描述 农场有N(1≤N≤1000)个牛棚,每个牛棚都有1只奶牛要参加在X牛棚举行的奶牛派对.共有M(1≤M≤100000)条单向路连接着牛棚,第i条踣需要Ti的时间来通过.牛们都很懒,所以不管是前 ...